LI HTS(R)-PUBLIC W ite - LIGGGHTS(R)-PUBLIC Documentation - LI HTS(R)-PUBLI

Commands

LIGGGHTS(R)-PUBLIC Documentation, Version 3.X

CFOEM Ci

COLPEIMNG PREVECT

LIGGGHTS(R)-PUBLIC DEM simulation engine

released by DCS Computing Gmbh, Linz, Austria,
www.dcs-computing.com , office@dcs-computing.com

LIGGGHTS(R)-PUBLIC is open-source, distributed under the terms of the GNU Public License, version 2 or
later. LIGGGHTS(R)-PUBLIC is part of CFDEM(R)project: www.liggghts.com | www.cfdem.com

Core developer and main author: Christoph Kloss, christoph.kloss @dcs-computing.com

LIGGGHTS(R)-PUBLIC is an Open Source Discrete Element Method Particle Simulation Software,
distributed by DCS Computing GmbH, Linz, Austria. LIGGGHTS (R) and CFDEM(R) are registered
trade marks of DCS Computing GmbH, the producer of the LIGGGHTS (R) software and the
CFDEM(R)coupling software See http://www.cfdem.com/terms-trademark-policy for details.

http://www.cfdem.com
http://www.dcs-computing.com
http://www.liggghts.com
http://www.cfdem.com

LIGGGHTS (R) Version info:

All LIGGGHTS (R) versions are based on a specific version of LIGGGHTS (R), as printed in the file
src/version.h LIGGGHTS (R) versions are identidied by a version number (e.g. '3.0"), a branch name (which is
'LIGGGHTS(R)-PUBLIC' for your release of LIGGGHTS), compilation info (date / time stamp and user
name), and a LAMMPS version number (which is the LAMMPS version that the LIGGGHTS(R)-PUBLIC
release is based on). The LAMMPS "version" is the date when it was released, such as 1 May 2010.

If you browse the HTML doc pages on the LIGGGHTS(R)-PUBLIC WWW site, they always describe the
most current version of LIGGGHTS(R)-PUBLIC. If you browse the HTML doc pages included in your
tarball, they describe the version you have.

LIGGGHTS (R) and its ancestor LAMMPS:

LAMMPS is a classical molecular dynamics simulation code designed to run efficiently on parallel
computers. It was developed at Sandia National Laboratories, a US Department of Energy facility, with
funding from the DOE. It is an open-source code, distributed freely under the terms of the GNU Public
License (GPL). The primary developers of LAMMPS are Steve Plimpton, Aidan Thompson, and Paul
Crozier. The LAMMPS WWW Site at http://lammps.sandia.gov has more information about LAMMPS.

The LIGGGHTS(R)-PUBLIC documentation is organized into the following sections. If you find errors or
omissions in this manual or have suggestions for useful information to add, please send an email to the
developers so we can improve the LIGGGHTS(R)-PUBLIC documentation.

Once you are familiar with LIGGGHTS(R)-PUBLIC, you may want to bookmark this page since it gives
quick access to documentation for all LIGGGHTS(R)-PUBLIC commands.

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

atom_modify command

Syntax:
atom_modify keyword wvalues ...

¢ one or more keyword/value pairs may be appended
¢ keyword = map or first or sort

map value = array or hash
first value = group-ID = group whose atoms will appear first in internal atom lists
sort values = Nfreqg binsize
Nfreg = sort atoms spatially every this many time steps
binsize = bin size for spatial sorting (distance units)

Examples:

atom_modify map hash
atom_modify map array sort 10000 2.0
atom_modify first colloid

Description:
Modify properties of the atom style selected within LIGGGHTS(R)-PUBLIC.

The map keyword determines how atom ID lookup is done for molecular problems. Lookups are performed
by bond (angle, etc) routines in LIGGGHTS(R)-PUBLIC to find the local atom index associated with a global
atom ID. When the array value is used, each processor stores a lookup table of length N, where N is the total
of atoms in the system. This is the fastest method for most simulations, but a processor can run out of
memory to store the table for very large simulations. The hash value uses a hash table to perform the lookups.
This method can be slightly slower than the array method, but its memory cost is proportional to N/P on each
processor, where P is the total number of processors running the simulation.

The first keyword allows a group to be specified whose atoms will be maintained as the first atoms in each
processor's list of owned atoms. This in only useful when the specified group is a small fraction of all the
atoms, and there are other operations LIGGGHTS(R)-PUBLIC is performing that will be sped-up
significantly by being able to loop over the smaller set of atoms. Otherwise the reordering required by this
option will be a net slow-down. The neigh modify include and communicate group commands are two
examples of commands that require this setting to work efficiently. Several fixes, most notably time
integration fixes like fix nve, also take advantage of this setting if the group they operate on is the group
specified by this command. Note that specifying "all" as the group-ID effectively turns off the first option.

It is OK to use the first keyword with a group that has not yet been defined, e.g. to use the atom_modify first
command at the beginning of your input script. LIGGGHTS(R)-PUBLIC does not use the group until a
simulation is run.

The sort keyword turns on a spatial sorting or reordering of atoms within each processor's sub-domain every
Nfreq timesteps. If Nfreq is set to O, then sorting is turned off. Sorting can improve cache performance and
thus speed-up a LIGGGHTS(R)-PUBLIC simulation, as discussed in a paper by (Meloni). Its efficiency
depends on the problem size (atoms/processor), how quickly the system becomes disordered, and various
other factors. As a general rule, sorting is typically more effective at speeding up simulations of liquids as
opposed to solids. In tests we have done, the speed-up can range from zero to 3-4x.

atom_modify command 1

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Reordering is performed every Nfreg timesteps during a dynamics run or iterations during a minimization.
More precisely, reordering occurs at the first reneighboring that occurs after the target timestep. The
reordering is performed locally by each processor, using bins of the specified binsize. If binsize is set to 0.0,
then a binsize equal to half the neighbor cutoff distance (force cutoff plus skin distance) is used, which is a
reasonable value. After the atoms have been binned, they are reordered so that atoms in the same bin are
adjacent to each other in the processor's 1d list of atoms.

The goal of this procedure is for atoms to put atoms close to each other in the processor's one-dimensional list
of atoms that are also near to each other spatially. This can improve cache performance when pairwise
interactions and neighbor lists are computed. Note that if bins are too small, there will be few atoms/bin.
Likewise if bins are too large, there will be many atoms/bin. In both cases, the goal of cache locality will be
undermined.

IMPORTANT NOTE: Running a simulation with sorting on versus off should not change the simulation
results in a statistical sense. However, a different ordering will induce round-off differences, which will lead
to diverging trajectories over time when comparing two simulations. Various commands, particularly those
which use random numbers, may generate (statistically identical) results which depend on the order in which
atoms are processed. The order of atoms in a dump file will also typically change if sorting is enabled.

Restrictions:

The map keyword can only be used before the simulation box is defined by a read data or create box
command.

The first and sort options cannot be used together. Since sorting is on by default, it will be turned off if the
first keyword is used with a group-ID that is not "all".

Related commands: none
Default:
By default, non-molecular problems do not allocate maps. For molecular problems, the option default is map

= array. By default, a "first" group is not defined. By default, sorting is enabled with a frequency of 1000 and
a binsize of 0.0, which means the neighbor cutoff will be used to set the bin size.

(Meloni) Meloni, Rosati and Colombo, J Chem Phys, 126, 121102 (2007).

atom_modify command 2

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

atom_style command

Syntax:

atom_style style args

¢ style = bond or charge or ellipsoid or full or line or molecular or sphere or granular or bond/gran or
tri or hybrid or superquadric or convexhull sph

args = none for any style except body and hybrid
body args = bstyle bstyle-args
bstyle = style of body particles
bstyle-args = additional arguments specific to the bstyle
see the body doc page for details
hybrid args = list of one or more sub-styles, each with their args

Examples:

atom_style bond

atom_style sphere

atom_style superquadric (not available yet in the PUBLIC version)
atom_style hybrid sphere bond

Description:

Define what style of atoms to use in a simulation. This determines what attributes are associated with the
atoms. This command must be used before a simulation is setup via a read data, read restart, or create box
command.

Once a style is assigned, it cannot be changed, so use a style general enough to encompass all attributes. E.g.
with style bond, angular terms cannot be used or added later to the model. It is OK to use a style more general
than needed, though it may be slightly inefficient.

The choice of style affects what quantities are stored by each atom, what quantities are communicated
between processors to enable forces to be computed, and what quantities are listed in the data file read by the
read data command.

These are the additional attributes of each style and the typical kinds of physical systems they are used to
model. All styles store coordinates, velocities, atom IDs and types. See the read data, create atoms, and set
commands for info on how to set these various quantities.

bond bonds bead-spring
polymers
bond/gran number of bonds and bond information granular bond
models
atomic system
charge charge with charges
convexhull mass, angular velocity, quaternion granular models
L . aspherical
ellipsoid shape, quaternion, angular momentum particles
line end points, angular velocity rigid bodies
molecular bonds, angles, dihedrals, impropers

atom_style command 3

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

uncharged
molecules
sph q(pressure), density SPH particles
sphere or granular |diameter, mass, angular velocity granular models

semi-axes, roundness/blockiness parameters, mass, angular velocity,

superquadric . granular models
quaternion
) . rigid bodies
tri corner points, angular momentum AWPMD

IMPORTANT NOTE: It is possible to add some attributes, such as a molecule ID, to atom styles that do not
have them via the fix property/atom command. This command also allows new custom attributes consisting of
extra integer or floating-point values to be added to atoms. See the fix property/atom doc page for examples of
cases where this is useful and details on how to initialize, access, and output the custom values.

All of the styles assign mass to particles on a per-type basis, using the mass command, except for sphere or
granular styles. They assign mass to individual particles on a per-particle basis.

For the sphere style, the particles are spheres and each stores a per-particle diameter and mass. If the diameter
> 0.0, the particle is a finite-size sphere. If the diameter = 0.0, it is a point particle. This is typically used for
granular models. Instead of sphere, keyword granular can be used.

For the bond/gran style, the number of granular bonds per atom is stored, and the information associated to it:
the type of each bond, the ID of the bonded partner atom and the so-called bond history. The bond history is
similar to the contact history for granular interaction, it stores the internal state of the bond. What exactly is
stored in this internal state is defined by the granular bond style used. There are 2 parameters: The number of
bond types, and the maximum number of bonds that each atom can have. For each bond type, the parameters
have to be specified via the bond coeff command (see example here) Note that bond/gran is an experimental
code which is may not be available in your release of LIGGGHTS. An example for the sytnax is given below:

atom_style bond/gran n_bondtypes 1 bonds_per_atom 6

For the ellipsoid style, the particles are ellipsoids and each stores a flag which indicates whether it is a
finite-size ellipsoid or a point particle. If it is an ellipsoid, it also stores a shape vector with the 3 diamters of
the ellipsoid and a quaternion 4-vector with its orientation.

For the line style, the particles are idealized line segments and each stores a per-particle mass and length and
orientation (i.e. the end points of the line segment).

For the tri style, the particles are planar triangles and each stores a per-particle mass and size and orientation
(i.e. the corner points of the triangle).

Typically, simulations require only a single (non-hybrid) atom style. If some atoms in the simulation do not
have all the properties defined by a particular style, use the simplest style that defines all the needed properties
by any atom. For example, if some atoms in a simulation are charged, but others are not, use the charge style.
If some atoms have bonds, but others do not, use the bond style.

The only scenario where the hybrid style is needed is if there is no single style which defines all needed
properties of all atoms. For example, if you want dipolar particles which will rotate due to torque, you would
need to use "atom_style hybrid sphere dipole". When a hybrid style is used, atoms store and communicate the
union of all quantities implied by the individual styles.

LIGGGHTS(R)-PUBLIC can be extended with new atom styles as well as new body styles; see this section.

Restrictions:

atom_style command 4

LIGGGHTS(R)-PUBLIC Users Manual

This command cannot be used after the simulation box is defined by a read data or create _box command.

The superquadric style is not yet available in the PUBLIC version The convexhull style is not yet available in
the PUBLIC version

The bond, molecular styles are part of the MOLECULAR package. The line and tri styles are part of the
ASPHERE package. They are only enabled if LIGGGHTS(R)-PUBLIC was built with that package. See the

Making LIGGGHTS(R)-PUBLIC section for more info.

Related commands:

read data, pair_style

Default: none

atom_style command 5

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

bond_coeff command

Syntax:
bond_coeff N args

¢ N = bond type (see asterisk form below)
¢ args = coefficients for one or more bond types

Examples:

bond_coeff 5 80.0 1.2

bond_coeff * 30.0 1.5 1
bond_coeff 1*4 30.0 1.5
bond_coeff 1 harmonic 2

0 1.
1.0
0.0

=)

.0
0 .0

Description:

Specify the bond force field coefficients for one or more bond types. The number and meaning of the
coefficients depends on the bond style. Bond coefficients can also be set in the data file read by the read data
command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild-card asterisk can be used to set the coefficients for multiple bond types. This takes the form "*" or "*n"
or "n*" or "m*n". If N = the number of bond types, then an asterisk with no numeric values means all types
from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types
from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using a bond_coeff command can override a previous setting for the same bond type. For example,
these commands set the coeffs for all bond types, then overwrite the coeffs for just bond type 2:

bond_coeff * 100.0 1.2
bond_coeff 2 200.0 1.2

A line in a data file that specifies bond coefficients uses the exact same format as the arguments of the
bond_coeff command in an input script, except that wild-card asterisks should not be used since coefficients
for all N types must be listed in the file. For example, under the "Bond Coeffs" section of a data file, the line
that corresponds to the 1st example above would be listed as

5 80.0 1.2

Here is an alphabetic list of bond styles defined in LIGGGHTS(R)-PUBLIC. Click on the style to display the
formula it computes and coefficients specified by the associated bond coeff command.

Note that here are also additional bond styles submitted by users which are included in the
LIGGGHTS(R)-PUBLIC distribution. The list of these with links to the individual styles are given in the bond
section of this page.

¢ bond style none - turn off bonded interactions
¢ bond style hybrid - define multiple styles of bond interactions

e bond_style harmonic - harmonic bond

bond_coeff command 6

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Restrictions:

This command must come after the simulation box is defined by a read data, read restart, or create box
command.

A bond style must be defined before any bond coefficients are set, either in the input script or in a data file.
Related commands:

bond style

Default: none

bond_coeff command

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

bond_style harmonic command
Syntax:

bond_style harmonic

Examples:

bond_style harmonic
bond_coeff 5 80.0 1.2

Description:

The harmonic bond style uses the potential
- 2
E = K(r—rp)

where 10 is the equilibrium bond distance. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy/distance”2)
¢ 10 (distance)

Restrictions:

This bond style can only be used if LIGGGHTS(R)-PUBLIC was built with the MOLECULAR package
(which it is by default). See the Making LIGGGHTS(R)-PUBLIC section for more info on packages.

Related commands:
bond coeff, delete_bonds

Default: none

bond_style harmonic command 8

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

bond_style hybrid command
Syntax:
bond_style hybrid stylel style2 ...
¢ stylel,style2 = list of one or more bond styles

Examples:

bond_style hybrid harmonic fene
bond_coeff 1 harmonic 80.0 1.2
bond_coeff 2* fene 30.0 1.5 1.0 1.0

Description:

The hybrid style enables the use of multiple bond styles in one simulation. A bond style is assigned to each
bond type. For example, bonds in a polymer flow (of bond type 1) could be computed with a fene potential
and bonds in the wall boundary (of bond type 2) could be computed with a harmonic potential. The
assignment of bond type to style is made via the bond coeff command or in the data file.

In the bond_coeff commands, the name of a bond style must be added after the bond type, with the remaining
coefficients being those appropriate to that style. In the example above, the 2 bond_coeff commands set bonds
of bond type 1 to be computed with a harmonic potential with coefficients 80.0, 1.2 for K, r0. All other bond
types (2-N) are computed with a fene potential with coefficients 30.0, 1.5, 1.0, 1.0 for K, RO, epsilon, sigma.

If bond coefficients are specified in the data file read via the read data command, then the same rule applies.
E.g. "harmonic" or "fene" must be added after the bond type, for each line in the "Bond Coeffs" section, e.g.

Bond Coeffs

1 harmonic 80.

0 2
2 fene 30.0 1.5 0

1.
1.0 1.0

A bond style of none with no additional coefficients can be used in place of a bond style, either in a input
script bond_coeff command or in the data file, if you desire to turn off interactions for specific bond types.

Restrictions:

This bond style can only be used if LIGGGHTS(R)-PUBLIC was built with the MOLECULAR package
(which it is by default). See the Making LIGGGHTS(R)-PUBLIC section for more info on packages.

Unlike other bond styles, the hybrid bond style does not store bond coefficient info for individual sub-styles in
a binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify bond_coeff
commands.

Related commands:

bond coeff, delete bonds

Default: none

bond_style hybrid command 9

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

bond_style none command
Syntax:

bond_style none

Examples:

bond_style none

Description:

Using a bond style of none means bond forces are not computed, even if pairs of bonded atoms were listed in
the data file read by the read data command.

Restrictions: none
Related commands: none

Default: none

bond_style none command 10

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

bond_style command
Syntax:
bond_style style args

¢ style = none or hybrid or class2 or fene or fene/expand or harmonic or morse or nonlinear or quartic

args = none for any style except hybrid
hybrid args = list of one or more styles
Examples:

bond_style harmonic
bond_style fene
bond_style hybrid harmonic fene

Description:

Set the formula(s) LIGGGHTS(R)-PUBLIC uses to compute bond interactions between pairs of atoms. In
LIGGGHTS(R)-PUBLIC, a bond differs from a pairwise interaction, which are set via the pair_style
command. Bonds are defined between specified pairs of atoms and remain in force for the duration of the
simulation (unless the bond breaks which is possible in some bond potentials). The list of bonded atoms is
read in by a read data or read restart command from a data or restart file. By contrast, pair potentials are
typically defined between all pairs of atoms within a cutoff distance and the set of active interactions changes
over time.

Hybrid models where bonds are computed using different bond potentials can be setup using the hybrid bond
style.

The coefficients associated with a bond style can be specified in a data or restart file or via the bond coeff
command.

All bond potentials store their coefficient data in binary restart files which means bond_style and bond coeff
commands do not need to be re-specified in an input script that restarts a simulation. See the read restart
command for details on how to do this. The one exception is that bond_style hybrid only stores the list of
sub-styles in the restart file; bond coefficients need to be re-specified.

IMPORTANT NOTE: When both a bond and pair style is defined, the special bonds command often needs to
be used to turn off (or weight) the pairwise interaction that would otherwise exist between 2 bonded atoms.

In the formulas listed for each bond style, r is the distance between the 2 atoms in the bond.

Here is an alphabetic list of bond styles defined in LIGGGHTS(R)-PUBLIC. Click on the style to display the
formula it computes and coefficients specified by the associated bond coeff command.

Note that there are also additional bond styles submitted by users which are included in the
LIGGGHTS(R)-PUBLIC distribution. The list of these with links to the individual styles are given in the bond
section of this page.

¢ bond style none - turn off bonded interactions
¢ bond style hybrid - define multiple styles of bond interactions

bond_style command 11

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

e bond_style harmonic - harmonic bond

Restrictions:

Bond styles can only be set for atom styles that allow bonds to be defined.

Most bond styles are part of the MOLECULAR package. They are only enabled if LIGGGHTS(R)-PUBLIC
was built with that package. See the Making ILIGGGHTS(R)-PUBLIC section for more info on packages. The
doc pages for individual bond potentials tell if it is part of a package.

Related commands:

bond coeff, delete_bonds

Default:

bond_style none

bond_style command 12

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

boundary command

Syntax:
boundary x y z

® X,y,Zz = p or s or f or m, one or two letters

p is periodic
f is non-periodic and fixed
s is non-periodic and shrink-wrapped
m is non-periodic and shrink-wrapped with a minimum value

Examples:

boundary p p £
boundary p fs p
boundary s f fm

Description:

Set the style of boundaries for the global simulation box in each dimension. A single letter assigns the same
style to both the lower and upper face of the box. Two letters assigns the first style to the lower face and the
second style to the upper face. The initial size of the simulation box is set by the read data, read restart, or
create_box commands.

The style p means the box is periodic, so that particles interact across the boundary, and they can exit one end
of the box and re-enter the other end. A periodic dimension can change in size due to constant pressure
boundary conditions or box deformation (see the fix npt and fix deform commands). The p style must be
applied to both faces of a dimension.

The styles f, s, and m mean the box is non-periodic, so that particles do not interact across the boundary and
do not move from one side of the box to the other. For style f, the position of the face is fixed. If an atom
moves outside the face it may be lost. For style s, the position of the face is set so as to encompass the atoms
in that dimension (shrink-wrapping), no matter how far they move. For style m, shrink-wrapping occurs, but is
bounded by the value specified in the data or restart file or set by the create box command. For example, if
the upper z face has a value of 50.0 in the data file, the face will always be positioned at 50.0 or above, even if
the maximum z-extent of all the atoms becomes less than 50.0.

For triclinic (non-orthogonal) simulation boxes, if the 2nd dimension of a tilt factor (e.g. y for xy) is periodic,
then the periodicity is enforced with the tilt factor offset. If the 1st dimension is shrink-wrapped, then the
shrink wrapping is applied to the tilted box face, to encompass the atoms. E.g. for a positive xy tilt, the xlo
and xhi faces of the box are planes tilting in the +y direction as y increases. These tilted planes are
shrink-wrapped around the atoms to determine the x extent of the box.

See Section _howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by
LIGGGHTS(R)-PUBLIC, and how to transform these parameters to and from other commonly used triclinic
representations.

IMPORTANT NOTE: If mesh walls (e.g. fix mesh/surface) are used, not only atom positions, but also the
mesh nodes are used for setting the boundaries.

Restrictions:

boundary command 13

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

This command cannot be used after the simulation box is defined by a read data or create _box command or
read restart command. See the change box command for how to change the simulation box boundaries after
it has been defined.

For 2d simulations, the z dimension must be periodic.

Related commands:

See the thermo modify command for a discussion of lost atoms.

Default:

boundary p p p

boundary command 14

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

box command

Syntax:
box keyword value ...

¢ one or more keyword/value pairs may be appended
¢ keyword = tilt

tilt value = small or large
Examples:

box tilt large
box tilt small

Description:

Set attributes of the simulation box.

For triclinic (non-orthogonal) simulation boxes, the tilt keyword allows simulation domains to be created with
arbitrary tilt factors, e.g. via the create box or read data commands. Tilt factors determine how skewed the
triclinic box is; see this section of the manual for a discussion of triclinic boxes in LIGGGHTS(R)-PUBLIC.
LIGGGHTS(R)-PUBLIC normally requires that no tilt factor can skew the box more than half the distance of
the parallel box length, which is the 1st dimension in the tilt factor (x for xz). If #ilt is set to small, which is the
default, then an error will be generated if a box is created which exceeds this limit. If #/# is set to large, then
no limit is enforced. You can create a box with any tilt factors you wish.

Note that if a simulation box has a large tilt factor, LIGGGHTS(R)-PUBLIC will run less efficiently, due to
the large volume of communication needed to acquire ghost atoms around a processor's irregular-shaped
sub-domain. For extreme values of tilt, LIGGGHTS(R)-PUBLIC may also lose atoms and generate an error.

Restrictions:

This command cannot be used after the simulation box is defined by a read data or create box command or
read restart command.

Related commands: none
Default:

The default value is tilt = small.

box command 15

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands
change_box command
Syntax:
change_box group-ID parameter args ... keyword args

¢ group-ID = ID of group of atoms to (optionally) displace
® one or more parameter/arg pairs may be appended

parameter = X Or y Or z Or Xy Or Xz Or yz or boundary or ortho or triclinic or set or rema
X, y, z args = style value(s)
style = final or delta or scale or volume
final values = lo hi
lo hi = box boundaries after displacement (distance units)
delta values = dlo dhi
dlo dhi = change in box boundaries after displacement (distance units)
scale values = factor
factor = multiplicative factor for change in box length after displacement
volume value = none = adjust this dim to preserve volume of system
Xy, Xz, yz args = style value
style = final or delta
final value = tilt

tilt = tilt factor after displacement (distance units)
delta value = dtilt
dtilt = change in tilt factor after displacement (distance units)
boundary args = X y z

X,y,z = p or s or £ or m, one or two letters
p is periodic
f is non-periodic and fixed
s is non-periodic and shrink-wrapped
m is non-periodic and shrink-wrapped with a minimum value
ortho args = none = change box to orthogonal
triclinic args = none = change box to triclinic
set args = none = store state of current box
remap args = none = remap atom coords from last saved state to current box

¢ zero or more keyword/value pairs may be appended
¢ keyword = units

units value = lattice or box
lattice = distances are defined in lattice units
box = distances are defined in simulation box units

Examples:

change_box all xy final -2.0 z final 0.0 5.0 boundary p p f remap units box
change_box all x scale 1.1 y volume z volume remap

Description:

Change the volume and/or shape and/or boundary conditions for the simulation box. Orthogonal simulation
boxes have 3 adjustable size parameters (X,y,z). Triclinic (non-orthogonal) simulation boxes have 6 adjustable
size/shape parameters (X,y,z,Xy,Xz,yz). Any or all of them can be adjusted independently by this command.
Thus it can be used to expand or contract a box, or to apply a shear strain to a non-orthogonal box. It can also
be used to change the boundary conditions for the simulation box, similar to the boundary command.

The size and shape of the initial simulation box are specified by the create box or read data or read restart
command used to setup the simulation. The size and shape may be altered by subsequent runs, e.g. by use of

change_box command 16

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

the fix npt or fix deform commands. The create box, read data, and read restart commands also determine
whether the simulation box is orthogonal or triclinic and their doc pages explain the meaning of the xy,xz,yz
tilt factors.

See Section _howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by
LIGGGHTS(R)-PUBLIC, and how to transform these parameters to and from other commonly used triclinic
representations.

The keywords used in this command are applied sequentially to the simulation box and the atoms in it, in the
order specified.

Before the sequence of keywords are invoked, the current box size/shape is stored, in case a remap keyword is
used to map the atom coordinates from a previously stored box size/shape to the current one.

After all the keywords have been processed, any shrink-wrap boundary conditions are invoked (see the
boundary command) which may change simulation box boundaries, and atoms are migrated to new owning
processors.

IMPORTANT NOTE: Unlike the earlier "displace_box" version of this command, atom remapping is NOT
performed by default. This command allows remapping to be done in a more general way, exactly when you
specify it (zero or more times) in the sequence of transformations. Thus if you do not use the remap keyword,
atom coordinates will not be changed even if the box size/shape changes. If a uniformly strained state is
desired, the remap keyword should be specified.

IMPORTANT NOTE: It is possible to lose atoms with this command. E.g. by changing the box without
remapping the atoms, and having atoms end up outside of non-periodic boundaries. It is also possible to alter
bonds between atoms straddling a boundary in bad ways. E.g. by converting a boundary from periodic to
non-periodic. It is also possible when remapping atoms to put them (nearly) on top of each other. E.g. by
converting a boundary from non-periodic to periodic. All of these will typically lead to bad dynamics and/or
generate error messages.

IMPORTANT NOTE: The simulation box size/shape can be changed by arbitrarily large amounts by this
command. This is not a problem, except that the mapping of processors to the simulation box is not changed
from its initial 3d configuration; see the processors command. Thus, if the box size/shape changes
dramatically, the mapping of processors to the simulation box may not end up as optimal as the initial
mapping attempted to be.

IMPORTANT NOTE: Because the keywords used in this command are applied one at a time to the simulation
box and the atoms in it, care must be taken with triclinic cells to avoid exceeding the limits on skew after each
transformation in the sequence. If skew is exceeded before the final transformation this can be avoided by
changing the order of the sequence, or breaking the transformation into two or more smaller transformations.
For more information on the allowed limits for box skew see the discussion on triclinic boxes on this page.

For the x, y, and z parameters, this is the meaning of their styles and values.

For style final, the final lo and hi box boundaries of a dimension are specified. The values can be in lattice or
box distance units. See the discussion of the units keyword below.

For style delta, plus or minus changes in the lo/hi box boundaries of a dimension are specified. The values can
be in lattice or box distance units. See the discussion of the units keyword below.

For style scale, a multiplicative factor to apply to the box length of a dimension is specified. For example, if

the initial box length is 10, and the factor is 1.1, then the final box length will be 11. A factor less than 1.0
means compression.

change_box command 17

LIGGGHTS(R)-PUBLIC Users Manual

The volume style changes the specified dimension in such a way that the overall box volume remains constant
with respect to the operation performed by the preceding keyword. The volume style can only be used
following a keyword that changed the volume, which is any of the x, y, z keywords. If the preceding keyword
"key" had a volume style, then both it and the current keyword apply to the keyword preceding "key". L.e. this
sequence of keywords is allowed:

change_box all x scale 1.1 y volume z volume

The volume style changes the associated dimension so that the overall box volume is unchanged relative to its
value before the preceding keyword was invoked.

If the following command is used, then the z box length will shrink by the same 1.1 factor the x box length
was increased by:

change_box all x scale 1.1 z volume

If the following command is used, then the y,z box lengths will each shrink by sqrt(1.1) to keep the volume
constant. In this case, the y,z box lengths shrink so as to keep their relative aspect ratio constant:

change_box all"x scale 1.1 y volume z volume

If the following command is used, then the final box will be a factor of 10% larger in x and y, and a factor of
21% smaller in z, so as to keep the volume constant:

change_box all x scale 1.1 z volume y scale 1.1 z volume

IMPORTANT NOTE: For solids or liquids, when one dimension of the box is expanded, it may be physically
undesirable to hold the other 2 box lengths constant since that implies a density change. For solids, adjusting
the other dimensions via the volume style may make physical sense (just as for a liquid), but may not be
correct for materials and potentials whose Poisson ratio is not 0.5.

For the scale and volume styles, the box length is expanded or compressed around its mid point.

For the xy, xz, and yz parameters, this is the meaning of their styles and values. Note that changing the tilt
factors of a triclinic box does not change its volume.

For style final, the final tilt factor is specified. The value can be in lattice or box distance units. See the
discussion of the units keyword below.

For style delta, a plus or minus change in the tilt factor is specified. The value can be in lattice or box distance
units. See the discussion of the units keyword below.

All of these styles change the xy, xz, yz tilt factors. In LIGGGHTS(R)-PUBLIC, tilt factors (xy,xz,yz) for
triclinic boxes are required to be no more than half the distance of the parallel box length. For example, if xlo
=2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between -5 and 5. Similarly, both xz
and yz must be between -(xhi-x10)/2 and +(yhi-ylo)/2. Note that this is not a limitation, since if the maximum
tilt factor is 5 (as in this example), then configurations with tilt = ..., -15, -5, 5, 15, 25, ... are all equivalent.
Any tilt factor specified by this command must be within these limits.

The boundary keyword takes arguments that have exactly the same meaning as they do for the boundary
command. In each dimension, a single letter assigns the same style to both the lower and upper face of the
box. Two letters assigns the first style to the lower face and the second style to the upper face.

The style p means the box is periodic; the other styles mean non-periodic. For style f, the position of the face
is fixed. For style s, the position of the face is set so as to encompass the atoms in that dimension

change_box command 18

LIGGGHTS(R)-PUBLIC Users Manual

(shrink-wrapping), no matter how far they move. For style m, shrink-wrapping occurs, but is bounded by the
current box edge in that dimension, so that the box will become no smaller. See the boundary command for
more explanation of these style options.

Note that the "boundary” command itself can only be used before the simulation box is defined via a

read data or create box or read restart command. This command allows the boundary conditions to be
changed later in your input script. Also note that the read restart will change boundary conditions to match
what is stored in the restart file. So if you wish to change them, you should use the change_box command
after the read_restart command.

The ortho and triclinic keywords convert the simulation box to be orthogonal or triclinic (non-orthongonal).
See this section for a discussion of how non-orthongal boxes are represented in LIGGGHTS(R)-PUBLIC.

The simulation box is defined as either orthogonal or triclinic when it is created via the create box, read data,
or read restart commands.

These keywords allow you to toggle the existing simulation box from orthogonal to triclinic and vice versa.
For example, an initial equilibration simulation can be run in an orthogonal box, the box can be toggled to
triclinic.

If the simulation box is currently triclinic and has non-zero tilt in Xy, yz, or Xz, then it cannot be converted to
an orthogonal box.

The set keyword saves the current box size/shape. This can be useful if you wish to use the remap keyword
more than once or if you wish it to be applied to an intermediate box size/shape in a sequence of keyword
operations. Note that the box size/shape is saved before any of the keywords are processed, i.e. the box
size/shape at the time the create_box command is encountered in the input script.

The remap keyword remaps atom coordinates from the last saved box size/shape to the current box state. For
example, if you stretch the box in the x dimension or tilt it in the xy plane via the x and xy keywords, then the
remap commmand will dilate or tilt the atoms to conform to the new box size/shape, as if the atoms moved
with the box as it deformed.

Note that this operation is performed without regard to periodic boundaries. Also, any shrink-wrapping of
non-periodic boundaries (see the boundary command) occurs after all keywords, including this one, have been

processed.

Only atoms in the specified group are remapped.

The units keyword determines the meaning of the distance units used to define various arguments. A box
value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing.

Restrictions:

If you use the ortho or triclinic keywords, then at the point in the input script when this command is issued, no
dumps can be active, nor can a fix ave/spatial or fix deform be active. This is because these commands test
whether the simulation box is orthogonal when they are first issued. Note that these commands can be used in
your script before a change_box command is issued, so long as an undump or unfix command is also used to
turn them off.

Related commands:

change_box command 19

fix _deform, boundary
Default:

The option default is units = box.

change_box command

LIGGGHTS(R)-PUBLIC Users Manual

20

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

clear command

Syntax:
clear
Examples:

(commands for 1lst simulation)
clear
(commands for 2nd simulation)

Description:

This command deletes all atoms, restores all settings to their default values, and frees all memory allocated by
LIGGGHTS(R)-PUBLIC. Once a clear command has been executed, it is as if LIGGGHTS(R)-PUBLIC were
starting over, with only the exceptions noted below. This command enables multiple jobs to be run
sequentially from one input script.

These settings are not affected by a clear command: the working directory (shell command), log file status
(log command), echo status (echo command), and input script variables (variable command).

Restrictions: none

Related commands: none

Default: none

clear command 21

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

communicate command

Syntax:
communicate style keyword value ...

e style = single or multi
¢ zero or more keyword/value pairs may be appended
¢ keyword = cutoff or group or vel

cutoff value = Rcut (distance units) = communicate atoms from this far away
group value = group-ID = only communicate atoms in the group
vel value = yes or no = do or do not communicate velocity info with ghost atoms

Examples:

communicate multi

communicate multi group solvent
communicate single vel yes
communicate single cutoff 5.0 vel yes

Description:

This command sets the style of inter-processor communication that occurs each timestep as atom coordinates
and other properties are exchanged between neighboring processors and stored as properties of ghost atoms.

The default style is single which means each processor acquires information for ghost atoms that are within a
single distance from its sub-domain. The distance is the maximum of the neighbor cutoff for all atom type
pairs.

For many systems this is an efficient algorithm, but for systems with widely varying cutoffs for different type
pairs, the multi style can be faster. In this case, each atom type is assigned its own distance cutoff for
communication purposes, and fewer atoms will be communicated. However, for granular systems
optimization is automatically performed with the single style, so multi is not necessary/available for granular
systems. See the neighbor multi command for a neighbor list construction option that may also be beneficial
for simulations of this kind.

The cutoff option allows you to set a ghost cutoff distance, which is the distance from the borders of a
processor's sub-domain at which ghost atoms are acquired from other processors. By default the ghost cutoff =
neighbor cutoff = pairwise force cutoff + neighbor skin. See the neighbor command for more information
about the skin distance. If the specified Rcut is greater than the neighbor cutoff, then extra ghost atoms will be
acquired. If it is smaller, the ghost cutoff is set to the neighbor cutoff.

These are simulation scenarios in which it may be useful or even necessary to set a ghost cutoff > neighbor
cutoff:

¢ a single polymer chain with bond interactions, but no pairwise interactions
¢ bonded interactions (e.g. dihedrals) extend further than the pairwise cutoff
¢ ghost atoms beyond the pairwise cutoff are needed for some computation

In the first scenario, a pairwise potential is not defined. Thus the pairwise neighbor cutoff will be 0.0. But
ghost atoms are still needed for computing bond, angle, etc interactions between atoms on different
processors, or when the interaction straddles a periodic boundary.

communicate command 22

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

The appropriate ghost cutoff depends on the newton bond setting. For newton bond off, the distance needs to
be the furthest distance between any two atoms in the bond. E.g. the distance between 1-4 atoms in a dihedral.
For newton bond on, the distance between the central atom in the bond, angle, etc and any other atom is
sufficient. E.g. the distance between 2-4 atoms in a dihedral.

In the second scenario, a pairwise potential is defined, but its neighbor cutoff is not sufficiently long enough
to enable bond, angle, etc terms to be computed. As in the previous scenario, an appropriate ghost cutoff
should be set.

In the last scenario, a fix or compute or pairwise potential needs to calculate with ghost atoms beyond the
normal pairwise cutoff for some computation it performs (e.g. locate neighbors of ghost atoms in a multibody
pair potential). Setting the ghost cutoff appropriately can insure it will find the needed atoms.

IMPORTANT NOTE: In these scenarios, if you do not set the ghost cutoff long enough, and if there is only
one processor in a periodic dimension (e.g. you are running in serial), then LIGGGHTS(R)-PUBLIC may
"find" the atom it is looking for (e.g. the partner atom in a bond), that is on the far side of the simulation box,
across a periodic boundary. This will typically lead to bad dynamics (i.e. the bond length is now the
simulation box length). To detect if this is happening, see the neigh modify cluster command.

The group option will limit communication to atoms in the specified group. This can be useful for models
where no ghost atoms are needed for some kinds of particles. All atoms (not just those in the specified group)
will still migrate to new processors as they move. The group specified with this option must also be specified
via the atom modify first command.

The vel option enables velocity information to be communicated with ghost particles. Depending on the
atom_style, velocity info includes the translational velocity, angular velocity, and angular momentum of a
particle. If the vel option is set to yes, then ghost atoms store these quantities; if no then they do not. The yes
setting is needed by some pair styles which require the velocity state of both the I and J particles to compute a
pairwise L,J interaction.

Note that if the fix deform command is being used with its "remap v" option enabled, then the velocities for
ghost atoms (in the fix deform group) mirrored across a periodic boundary will also include components due
to any velocity shift that occurs across that boundary (e.g. due to dilation or shear).

Restrictions: none

Related commands:

neighbor

Default:

The default settings are style = single, group = all, cutoff = 0.0, vel = no. The cutoff default of 0.0 means that
ghost cutoff = neighbor cutoff = pairwise force cutoff + neighbor skin.

communicate command 23

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute atom/molecule command

Syntax:
compute ID group-ID atom/molecule inputl input2 ...

¢ ID, group-ID are documented in compute command

¢ atom/molecule = style name of this compute command
¢ one or more inputs can be listed

e input = c_ID, c_ID[N], f_ID, f_ID[N], v_name

c_ID = per-atom vector calculated by a compute with ID

c_ID[I] = Ith column of per-atom array calculated by a compute with ID
f_ID = per-atom vector calculated by a fix with ID
f_ID[I] = Ith column of per-atom array calculated by a fix with ID

v_name = per-atom vector calculated by an atom-style variable with name
Examples:

compute 1 all atom/molecule c_ke c_pe
compute 1 top atom/molecule v_myFormula c_stress3

Description:

Define a calculation that sums per-atom values on a per-molecule basis, one per listed input. The inputs can
computes, fixes, or yariables that generate per-atom quantities. Note that attributes stored by atoms, such as
mass or force, can also be summed on a per-molecule basis, by accessing these quantities via the compute

property/atom command.

Each listed input is operated on independently. Only atoms within the specified group contribute to the
per-molecule sum. Note that compute or fix inputs define their own group which may affect the quantities
they return. For example, if a compute is used as an input which generates a per-atom vector, it will generate
values of 0.0 for atoms that are not in the group specified for that compute.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

If an input begins with "c_", a compute ID must follow which has been previously defined in the input script
and which generates per-atom quantities. See the individual compute doc page for details. If no bracketed
integer is appended, the vector calculated by the compute is used. If a bracketed integer is appended, the Ith
column of the array calculated by the compute is used. Users can also write code for their own compute styles

and add them to LIGGGHTS(R)-PUBLIC.

If an input begins with "f_", a fix ID must follow which has been previously defined in the input script and
which generates per-atom quantities. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute atom/molecule
references the values, else an error results. If no bracketed integer is appended, the vector calculated by the fix
is used. If a bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can
also write code for their own fix style and add them to LIGGGHTS(R)-PUBLIC.

If an input begins with "v_", a variable name must follow which has been previously defined in the input
script. It must be an atom-style variable. Atom-style variables can reference thermodynamic keywords and

compute atom/molecule command 24

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

various per-atom attributes, or invoke other computes, fixes, or variables when they are evaluated, so this is a
very general means of generating per-atom quantities to sum on a per-molecule basis.

Output info:

This compute calculates a global vector or global array depending on the number of input values. The length
of the vector or number of rows in the array is the number of molecules. If a single input is specified, a global
vector is produced. If two or more inputs are specified, a global array is produced where the number of
columns = the number of inputs. The vector or array can be accessed by any command that uses global values
from a compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

All the vector or array values calculated by this compute are "extensive".

The vector or array values will be in whatever units the input quantities are in.

Restrictions: none
Related commands:

compute, fix, variable

Default: none

compute atom/molecule command 25

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute bond/local command

Syntax:
compute ID group-ID bond/local inputl input2 ...

¢ ID, group-ID are documented in compute command
¢ bond/local = style name of this compute command
¢ one or more keywords may be appended

¢ keyword = dist or eng

dist = bond distance
eng = bond energy
force = bond force

Examples:

compute 1 all bond/local eng
compute 1 all bond/local dist eng force

Description:

Define a computation that calculates properties of individual bond interactions. The number of datums
generated, aggregated across all processors, equals the number of bonds in the system, modified by the group
parameter as explained below.

The local data stored by this command is generated by looping over all the atoms owned on a processor and
their bonds. A bond will only be included if both atoms in the bond are in the specified compute group. Any
bonds that have been broken (see the bond style command) by setting their bond type to 0 are not included.
Bonds that have been turned off (see the fix shake or delete bonds commands) by setting their bond type
negative are written into the file, but their energy will be 0.0.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, bond output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

Here is an example of how to do this:

compute 1 all property/local batoml batom2 btype
compute 2 all bond/local dist eng
dump 1 all local 1000 tmp.dump index c_1[1] c_1[2] c_1[3] c_2[1] c_2[2]

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of bonds. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

compute bond/local command 26

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

The output for dist will be in distance units. The output for eng will be in energy units. The output for force
will be in force units.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

compute bond/local command

27

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute centro/atom command

Syntax:
compute ID group—-ID centro/atom lattice

¢ ID, group-ID are documented in compute command
® centro/atom = style name of this compute command
e lattice = fcc or bee or N = # of neighbors per atom to include

Examples:
compute 1 all centro/atom fcc

compute 1 all centro/atom 8
Description:

Define a computation that calculates the centro-symmetry parameter for each atom in the group. In solid-state
systems the centro-symmetry parameter is a useful measure of the local lattice disorder around an atom and
can be used to characterize whether the atom is part of a perfect lattice, a local defect (e.g. a dislocation or
stacking fault), or at a surface.

The value of the centro-symmetry parameter will be 0.0 for atoms not in the specified compute group.

This parameter is computed using the following formula from (Kelchner)

N/2 |
CS =) |Ri+ Riinypaf?

=1

where the N nearest neighbors or each atom are identified and Ri and Ri+N/2 are vectors from the central
atom to a particular pair of nearest neighbors. There are N*(N-1)/2 possible neighbor pairs that can contribute
to this formula. The quantity in the sum is computed for each, and the N/2 smallest are used. This will
typically be for pairs of atoms in symmetrically opposite positions with respect to the central atom; hence the
i+N/2 notation.

N is an input parameter, which should be set to correspond to the number of nearest neighbors in the
underlying lattice of atoms. If the keyword fcc or bec is used, N is set to 12 and 8 respectively. More
generally, N can be set to a positive, even integer.

For an atom on a lattice site, surrounded by atoms on a perfect lattice, the centro-symmetry parameter will be
0. It will be near 0 for small thermal perturbations of a perfect lattice. If a point defect exists, the symmetry is
broken, and the parameter will be a larger positive value. An atom at a surface will have a large positive
parameter. If the atom does not have N neighbors (within the potential cutoff), then its centro-symmetry
parameter is set to 0.0.

Only atoms within the cutoff of the pairwise neighbor list are considered as possible neighbors. Atoms not in
the compute group are included in the N neighbors used in this calculation.

compute centro/atom command 28

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (e.g.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each with a centro/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section howto 15 for an overview of LIGGGHTS(R)-PUBLIC output options.

The per-atom vector values are unitless values >= 0.0. Their magnitude depends on the lattice style due to the
number of contibuting neighbor pairs in the summation in the formula above. And it depends on the local
defects surrounding the central atom, as described above.

Here are typical centro-symmetry values, from a a nanoindentation simulation into gold (FCC). These were
provided by Jon Zimmerman (Sandia):

Bulk lattice = 0

Dislocation core ~ 1.0 (0.5 to 1.25)
Stacking faults ~ 5.0 (4.0 to 6.0)
Free surface ~ 23.0

These values are *not* normalized by the square of the lattice parameter. If they were, normalized values
would be:

Bulk lattice = 0

Dislocation core ~ 0.06 (0.03 to 0.075)
Stacking faults ~ 0.3 (0.24 to 0.36)
Free surface ~ 1.38

For BCC materials, the values for dislocation cores and free surfaces would be somewhat different, due to
their being only 8 neighbors instead of 12.

Restrictions: none
Related commands:

compute cna/atom

Default: none

(Kelchner) Kelchner, Plimpton, Hamilton, Phys Rev B, 58, 11085 (1998).

compute centro/atom command 29

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute cluster/atom command
Syntax:
compute ID group-ID cluster/atom cutoff
¢ ID, group-ID are documented in compute command
¢ cluster/atom = style name of this compute command
¢ cutoff = distance within which to label atoms as part of same cluster (distance units)
Examples:
compute 1 all cluster/atom 1.0
Description:
Define a computation that assigns each atom a cluster ID.
A cluster is defined as a set of atoms, each of which is within the cutoff distance from one or more other
atoms in the cluster. If an atom has no neighbors within the cutoff distance, then it is a 1-atom cluster. The ID

of every atom in the cluster will be the smallest atom ID of any atom in the cluster.

Only atoms in the compute group are clustered and assigned cluster IDs. Atoms not in the compute group are
assigned a cluster ID = 0.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each of a clsuter/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LIGGGHTS(R)-PUBLIC output options.

The per-atom vector values will be an ID > 0, as explained above.
Restrictions: none
Related commands:

compute coord/atom

Default: none

compute cluster/atom command 30

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute cha/atom command

Syntax:
compute ID group-ID cna/atom cutoff
¢ ID, group-ID are documented in compute command
® cna/atom = style name of this compute command
e cutoff = cutoff distance for nearest neighbors (distance units)
Examples:
compute 1 all cna/atom 3.08
Description:
Define a computation that calculates the CNA (Common Neighbor Analysis) pattern for each atom in the
group. In solid-state systems the CNA pattern is a useful measure of the local crystal structure around an

atom. The CNA methodology is described in (Faken) and (Tsuzuki).

Currently, there are five kinds of CNA patterns LIGGGHTS(R)-PUBLIC recognizes:

efcc=1
ehcp=2
ebcc=3

® jcosohedral = 4
e unknown =5

The value of the CNA pattern will be 0 for atoms not in the specified compute group. Note that normally a
CNA calculation should only be performed on mono-component systems.

The CNA calculation can be sensitive to the specified cutoff value. You should insure the appropriate nearest
neighbors of an atom are found within the cutoff distance for the presumed crystal strucure. E.g. 12 nearest
neighbor for perfect FCC and HCP crystals, 14 nearest neighbors for perfect BCC crystals. These formulas
can be used to obtain a good cutoff distance:

1 V2
ri® = g+1 a ~ 0.8536 a

2 |

C

1
re® = S(V2+1)ax1207a

Whep o
e

S| =

where a is the lattice constant for the crystal structure concerned and in the HCP case, x = (c/a) / 1.633, where
1.633 is the ideal c/a for HCP crystals.

compute cna/atom command 31

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Also note that since the CNA calculation in LIGGGHTS(R)-PUBLIC uses the neighbors of an owned atom to
find the nearest neighbors of a ghost atom, the following relation should also be satisfied:

Rec 4+ Rs > 2 x cutoff

where Rc is the cutoff distance of the potential, Rs is the skin distance as specified by the neighbor command,
and cutoff is the argument used with the compute cna/atom command. LIGGGHTS(R)-PUBLIC will issue a
warning if this is not the case.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (e.g.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each with a cna/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section howto 15 for an overview of LIGGGHTS(R)-PUBLIC output options.

The per-atom vector values will be a number from O to 5, as explained above.
Restrictions: none
Related commands:

compute centro/atom

Default: none

(Faken) Faken, Jonsson, Comput Mater Sci, 2, 279 (1994).

(Tsuzuki) Tsuzuki, Branicio, Rino, Comput Phys Comm, 177, 518 (2007).

compute cna/atom command 32

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute com command
Syntax:
compute ID group—-ID com

¢ ID, group-ID are documented in compute command
¢ com = style name of this compute command

Examples:
compute 1 all com
Description:

Define a computation that calculates the center-of-mass of the group of atoms, including all effects due to
atoms passing thru periodic boundaries.

A vector of three quantites is calculated by this compute, which are the X,y,z coordinates of the center of
mass.

IMPORTANT NOTE: The coordinates of an atom contribute to the center-of-mass in "unwrapped" form, by
using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read data command for a discussion of image flags
and how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by
using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the center-of-mass may not reflect its true contribution. See the fix rigid
command for details. Thus, to compute the center-of-mass of rigid bodies as they cross periodic boundaries,
you will need to post-process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global vector of length 3, which can be accessed by indices 1-3 by any command
that uses global vector values from a compute as input. See this section for an overview of
LIGGGHTS(R)-PUBLIC output options.

The vector values are "intensive". The vector values will be in distance units.

Restrictions: none

Related commands:

compute com/molecule

Default: none

compute com command 33

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute com/molecule command

Syntax:
compute ID group-ID com/molecule

¢ ID, group-ID are documented in compute command
¢ com/molecule = style name of this compute command

Examples:
compute 1 fluid com/molecule
Description:

Define a computation that calculates the center-of-mass of individual molecules. The calculation includes all
effects due to atoms passing thru periodic boundaries.

The x,y,z coordinates of the center-of-mass for a particular molecule are only computed if one or more of its
atoms are in the specified group. Normally all atoms in the molecule should be in the group, however this is
not required. LIGGGHTS(R)-PUBLIC will warn you if this is not the case. Only atoms in the group
contribute to the center-of-mass calculation for the molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to the molecule's center-of-mass in "unwrapped"
form, by using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read data command for a discussion of image flags
and how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by
using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the center-of-mass may not reflect its true contribution. See the fix rigid
command for details. Thus, to compute the center-of-mass of rigid bodies as they cross periodic boundaries,
you will need to post-process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns =
3 for the x,y,z center-of-mass coordinates of each molecule. These values can be accessed by any command
that uses global array values from a compute as input. See Section _howto 15 for an overview of
LIGGGHTS(R)-PUBLIC output options.

The array values are "intensive". The array values will be in distance units.
Restrictions: none

Related commands:

compute com/molecule command 34

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
compute com

Default: none

compute com/molecule command

35

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute contact/atom command
Syntax:
compute ID group-ID contact/atom

¢ ID, group-ID are documented in compute command
® contact/atom = style name of this compute command

Examples:

compute 1 all contact/atom

Description:

Define a computation that calculates the number of contacts for each atom in a group.

The contact number is defined for finite-size spherical particles as the number of neighbor atoms which
overlap the central particle, meaning that their distance of separation is less than or equal to the sum of the
radii of the two particles.

The value of the contact number will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, whose values can be accessed by any command that uses per-atom
values from a compute as input. See Section _howto 15 for an overview of LIGGGHTS(R)-PUBLIC output
options.

The per-atom vector values will be a number >= 0.0, as explained above.

Restrictions:

This compute requires that atoms store a radius as defined by the atom_style sphere command.

Related commands:

compute coord/atom

Default: none

compute contact/atom command 36

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute coord/atom command

Syntax:

compute ID group-ID coord/atom cutoff keyword value

¢ ID, group-ID are documented in compute command

¢ coord/atom = style name of this compute command cutoff = distance within which to count
coordination neighbors (distance units) zero or more keyword/value pairs may be appended to args

¢ keyword = mix or typel, type2, ...

mix value = yes or no -ID
no = count all neighbors
yes = count only neighbors that have same atom type

typeN = atom type for Nth coordination count (see asterisk form below)

Examples:

all coord/atom
all coord/atom
all coord/atom
all coord/atom

compute
compute
compute
compute

e e e

Description:
Define a computation that calculates one or more coordination numbers for each atom in a group.

A coordination number is defined as the number of neighbor atoms with specified atom type(s) that are within
the specified cutoff distance from the central atom. Atoms not in the group are included in a coordination
number of atoms in the group.

The typeN keywords allow you to specify which atom types contribute to each coordination number. One
coordination number is computed for each of the typeN keywords listed. If no fypeN keywords are listed, a
single coordination number is calculated, which includes atoms of all types (same as the "*" format, see
below).

The typeN keywords can be specified in one of two ways. An explicit numeric value can be used, as in the 2nd
example above. Or a wild-card asterisk can be used to specify a range of atom types. This takes the form "*"
or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values means all
types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all
types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

The value of all coordination numbers will be 0.0 for atoms not in the specified compute group.
The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too

frequently.

Keyword mix controlls if all neighbors are counted or if only neighbors with same atom type are counted. The
latter can be useful to quanitfy mixture of different species.

compute coord/atom command 37

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

IMPORTANT NOTE: If you have a bonded system, then the settings of special bonds command can remove
pairwise interactions between atoms in the same bond. This is the default setting for the special bonds
command, and means those pairwise interactions do not appear in the neighbor list. Because this fix uses the
neighbor list, it also means those pairs will not be included in the coordination count. One way to get around
this, is to write a dump file, and use the rerun command to compute the coordination for snapshots in the
dump file. The rerun script can use a special bonds command that includes all pairs in the neighbor list.

Output info:

If single typel keyword is specified (or if none are specified), or the mix keyword is used, this compute
calculates a per-atom vector. If multiple fypeN keywords are specified, this compute calculates a per-atom
array, with N columns. These values can be accessed by any command that uses per-atom values from a
compute as input. See Section _howto 15 for an overview of LIGGGHTS(R)-PUBLIC output options.
The per-atom vector or array values will be a number >= (.0, as explained above.

Restrictions: none

Related commands:

compute cluster/atom

Default: none

compute coord/atom command 38

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute coord/gran command
Syntax:
compute ID group-ID coord/gran

¢ ID, group-ID are documented in compute command
® coord/atom = style name of this compute command

Examples:
compute 1 all coord/gran
Description:

Define a computation that calculates the coordination number for each atom in a group. The value of the
coordination number will be 0.0 for atoms not in the specified compute group.

The coordination number is defined as the number of neighbor atoms within the granular cutoff distance from
the central atom. The cutoff distance for granular systems is the sum of the radii of the two particles.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each of a coord/gran style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

The per-atom vector values will be a number >= 0.0, as explained above.
Restrictions:

This command cannot be applied to multi-sphere simulations, as the output will not be the per-body
coordination number.

Related commands: none

Default: none

compute coord/gran command 39

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute displace/atom command

Syntax:
compute ID group—-ID displace/atom

¢ ID, group-ID are documented in compute command
e displace/atom = style name of this compute command

Examples:
compute 1 all displace/atom
Description:

Define a computation that calculates the current displacement of each atom in the group from its original
coordinates, including all effects due to atoms passing thru periodic boundaries.

A vector of four quantites per atom is calculated by this compute. The first 3 elements of the vector are the
dx,dy,dz displacements. The 4th component is the total displacement, i.e. sqrt(dx*dx + dy*dy + dz*dz).

The displacement of an atom is from its original position at the time the compute command was issued. The
value of the displacement will be 0.0 for atoms not in the specified compute group.

IMPORTANT NOTE: Initial coordinates are stored in "unwrapped" form, by using the image flags associated
with each atom. See the dump custom command for a discussion of "unwrapped" coordinates. See the Atoms
section of the read data command for a discussion of image flags and how they are set for each atom. You
can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and the computed displacement may not reflect its true displacement. See the fix rigid command
for details. Thus, to compute the displacement of rigid bodies as they cross periodic boundaries, you will need
to post-process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: If you want the quantities calculated by this compute to be continuous when running
from a restart file, then you should use the same ID for this compute, as in the original run. This is so that the
created fix will also have the same ID, and thus be initialized correctly with atom coordinates from the restart
file.

Output info:
This compute calculates a per-atom array with 4 columns, which can be accessed by indices 1-4 by any

command that uses per-atom values from a compute as input. See Section _howto 15 for an overview of
LIGGGHTS(R)-PUBLIC output options.

The per-atom array values will be in distance units.
Restrictions: none

Related commands:

compute displace/atom command 40

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
compute msd, dump custom, fix store/state

Default: none

compute displace/atom command

41

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute erotate/asphere command
Syntax:
compute ID group-ID erotate/asphere

¢ ID, group-ID are documented in compute command
e erotate/asphere = style name of this compute command

Examples:

compute 1 all erotate/asphere

Description:

Define a computation that calculates the rotational kinetic energy of a group of aspherical particles. The
aspherical particles can be ellipsoids, or line segments, or triangles. See the atom_style and read data
commands for descriptions of these options.

For all 3 types of particles, the rotational kinetic energy is computed as 1/2 I w”2, where I is the inertia tensor
for the aspherical particle and w is its angular velocity, which is computed from its angular momentum if

needed.

IMPORTANT NOTE: For 2d models, ellipsoidal particles are treated as ellipsoids, not ellipses, meaning their
moments of inertia will be the same as in 3d.

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section howto 15 for an overview of LIGGGHTS(R)-PUBLIC
output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.

Restrictions:

This compute requires that ellipsoidal particles atoms store a shape and quaternion orientation and angular
momentum as defined by the atom_style ellipsoid command.

This compute requires that line segment particles atoms store a length and orientation and angular velocity as
defined by the atom_style line command.

This compute requires that triangular particles atoms store a size and shape and quaternion orientation and
angular momentum as defined by the atom_style tri command.

All particles in the group must be finite-size. They cannot be point particles.

Related commands: none

compute erotate/sphere

compute erotate/asphere command 42

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Default: none

compute erotate/asphere command

43

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute erotate/multisphere command
Syntax:
compute ID group-ID erotate/multisphere

¢ ID, group-ID are documented in compute command
¢ erotate/multisphere = style name of this compute command

Examples:

compute 1 all erotate/multisphere

Description:

Define a computation that calculates the rotational kinetic energy of a collection of multisphere bodies.

The rotational energy of each multisphere body is computed as 1/2 I Wbody”2, where 1 is the inertia tensor
for the multisphere body, and Wbody is its angular velocity vector. Both I and Wbody are in the frame of
reference of the multisphere bodys, i.e. I is diagonalized.

This compute automatically connects to the fix multisphere commands which defines the multisphere bodies.
The group specified in the compute command is ignored. The rotational energy of all the multisphere bodies
defined by the fix multisphere command in included in the calculation.

Output info:

This compute calculates a global scalar (the summed rotational energy of all the multisphere bodies). This
value can be used by any command that uses a global scalar value from a compute as input. See

Section _howto 15 for an overview of LIGGGHTS(R)-PUBLIC output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions: none

Related commands:

compute ke/multisphere

Default: none

compute erotate/multisphere command 44

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute erotate/sphere/atom command
Syntax:
compute ID group-ID erotate/sphere/atom

¢ ID, group-ID are documented in compute command
e erotate/sphere/atom = style name of this compute command

Examples:

compute 1 all erotate/sphere/atom

Description:

Define a computation that calculates the rotational kinetic energy for each particle in a group.

The rotational energy is computed as 1/2 I w*2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of
inertia will be the same as in 3d.

The value of the rotational kinetic energy will be 0.0 for atoms not in the specified compute group or for point
particles with a radius = 0.0.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LIGGGHTS(R)-PUBLIC output options.

The per-atom vector values will be in energy units.
Restrictions: none
Related commands:

dump custom

Default: none

compute erotate/sphere/atom command 45

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute erotate/sphere command
Syntax:
compute ID group-ID erotate/sphere

¢ ID, group-ID are documented in compute command
e erotate/sphere = style name of this compute command

Examples:

compute 1 all erotate/sphere

Description:

Define a computation that calculates the rotational kinetic energy of a group of spherical particles.

The rotational energy is computed as 1/2 I w*2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of
inertia will be the same as in 3d.

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section _howto 15 for an overview of LIGGGHTS(R)-PUBLIC
output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.

Restrictions:

This compute requires that atoms store a radius and angular velocity (omega) as defined by the atom_style
sphere command.

All particles in the group must be finite-size spheres or point particles. They cannot be aspherical. Point
particles will not contribute to the rotational energy.

Related commands:

compute erotate/asphere

Default: none

compute erotate/sphere command 46

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute group/group command

Syntax:
compute ID group-ID group/group group2-ID keyword value ...

¢ ID, group-ID are documented in compute command
¢ group/group = style name of this compute command
¢ group2-ID = group ID of second (or same) group

¢ zero or more keyword/value pairs may be appended
¢ keyword = pair or boundary

palir value = yes or no
boundary value = yes or no

Examples:

compute 1 lower group/group upper
compute mine fluid group/group wall

Description:

Define a computation that calculates the total energy and force interaction between two groups of atoms: the
compute group and the specified group2. The two groups can be the same.

If the pair keyword is set to yes, which is the default, then the the interaction energy will include a pair
component which is defined as the pairwise energy between all pairs of atoms where one atom in the pair is in
the first group and the other is in the second group. Likewise, the interaction force calculated by this compute
will include the force on the compute group atoms due to pairwise interactions with atoms in the specified
group?2.

This compute does not calculate any bond interactions between atoms in the two groups.

The pairwise contributions to the group-group interactions are calculated by looping over a neighbor list.
Output info:

This compute calculates a global scalar (the energy) and a global vector of length 3 (force), which can be
accessed by indices 1-3. These values can be used by any command that uses global scalar or vector values

from a compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

Both the scalar and vector values calculated by this compute are "extensive". The scalar value will be in
energy units. The vector values will be in force units.

Restrictions:
Related commands: none
Default:

The option defaults are pair = yes, kspace = no, and boundary = yes.

compute group/group command 47

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
Bogusz et al, J Chem Phys, 108, 7070 (1998)

compute group/group command

48

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute gyration command

Syntax:
compute ID group-ID gyration

¢ ID, group-ID are documented in compute command
¢ gyration = style name of this compute command

Examples:
compute 1 molecule gyration
Description:

Define a computation that calculates the radius of gyration Rg of the group of atoms, including all effects due
to atoms passing thru periodic boundaries.

Rg is a measure of the size of the group of atoms, and is computed by this formula

1 ‘

2 2

Ry® =i ¥ W15~ %)
M 4

where M is the total mass of the group, Rcm is the center-of-mass position of the group, and the sum is over
all atoms in the group.

A Rg tensor, stored as a 6-element vector, is also calculated by this compute. The formula for the components
of the tensor is the same as the above formula, except that (Ri - Rem)”2 is replaced by (Rix - Remx) * (Riy -
Rcmy) for the xy component, etc. The 6 components of the vector are ordered XX, yy, zz, Xy, Xz, yZ.

IMPORTANT NOTE: The coordinates of an atom contribute to Rg in "unwrapped" form, by using the image

flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

Output info:

This compute calculates a global scalar (Rg) and a global vector of length 6 (Rg tensor), which can be
accessed by indices 1-6. These values can be used by any command that uses a global scalar value or vector
values from a compute as input. See Section howto 15 for an overview of LIGGGHTS(R)-PUBLIC output
options.

The scalar and vector values calculated by this compute are "intensive". The scalar and vector values will be
in distance units.

Restrictions: none

Related commands:

compute gyration command 49

http://www.cfdem.com

compute gyration/molecule

Default: none

compute gyration command

LIGGGHTS(R)-PUBLIC Users Manual

50

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute gyration/molecule command

Syntax:
compute ID group-ID gyration/molecule keyword value ...

¢ ID, group-ID are documented in compute command

¢ gyration/molecule = style name of this compute command
¢ zero or more keyword/value pairs may be appended

¢ keyword = tensor

tensor value = none

Examples:

compute 1 molecule gyration/molecule
compute 2 molecule gyration/molecule tensor

Description:

Define a computation that calculates the radius of gyration Rg of individual molecules. The calculation
includes all effects due to atoms passing thru periodic boundaries.

Rg is a measure of the size of a molecule, and is computed by this formula

. 1

.?'f'l-i(?"i 7 ?"r:rirn)2

where M is the total mass of the molecule, Rcm is the center-of-mass position of the molecule, and the sum is
over all atoms in the molecule and in the group.

If the tensor keyword is specified, then the scalar Rg value is not calculated, but an Rg tensor is instead
calculated for each molecule. The formula for the components of the tensor is the same as the above formula,
except that (Ri - Rem)”2 is replaced by (Rix - Remx) * (Riy - Remy) for the Xy component, etc. The 6
components of the tensor are ordered XX, yy, zz, Xy, Xz, yZ.

Rg for a particular molecule is only computed if one or more of its atoms are in the specified group. Normally
all atoms in the molecule should be in the group, however this is not required. LIGGGHTS(R)-PUBLIC will
warn you if this is not the case. Only atoms in the group contribute to the Rg calculation for the molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to Rg in "unwrapped" form, by using the image

flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

compute gyration/molecule command 51

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Output info:

This compute calculates a global vector if the fensor keyword is not specified and a global array if it is. The
length of the vector or number of rows in the array is the number of molecules. If the fensor keyword is
specified, the global array has 6 columns. The vector or array can be accessed by any command that uses
global values from a compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output
options.

All the vector or array values calculated by this compute are "intensive". The vector or array values will be in
distance units.

Restrictions: none

Related commands: none

compute gyration

Default: none

compute gyration/molecule command 52

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute command

Syntax:
compute ID group-ID style args

¢ ID = user-assigned name for the computation

¢ group-ID = ID of the group of atoms to perform the computation on
¢ style = one of a list of possible style names (see below)

¢ args = arguments used by a particular style

Examples:

compute 1 all temp
compute newtemp flow temp/partial 1 1 0
compute 3 all ke/atom

Description:

Define a computation that will be performed on a group of atoms. Quantities calculated by a compute are
instantaneous values, meaning they are calculated from information about atoms on the current timestep or
iteration, though a compute may internally store some information about a previous state of the system.
Defining a compute does not perform a computation. Instead computes are invoked by other
LIGGGHTS(R)-PUBLIC commands as needed, e.g. to calculate dump file output. See this howto section for a
summary of various LIGGGHTS(R)-PUBLIC output options, many of which involve computes.

The full list of fixes defined in LIGGGHTS(R)-PUBLIC is on this page.

The ID of a compute can only contain alphanumeric characters and underscores.

Computes calculate one of three styles of quantities: global, per-atom, or local. A global quantity is one or
more system-wide values, e.g. the temperature of the system. A per-atom quantity is one or more values per
atom, e.g. the kinetic energy of each atom. Per-atom values are set to 0.0 for atoms not in the specified
compute group. Local quantities are calculated by each processor based on the atoms it owns, but there may
be zero or more per atom, e.g. a list of bond distances. Computes that produce per-atom quantities have the
word "atom" in their style, e.g. ke/atom. Computes that produce local quantities have the word "local" in their
style, e.g. bond/local. Styles with neither "atom" or "local" in their style produce global quantities.

Note that a single compute produces either global or per-atom or local quantities, but never more than one of
these.

Global, per-atom, and local quantities each come in three kinds: a single scalar value, a vector of values, or a
2d array of values. The doc page for each compute describes the style and kind of values it produces, e.g. a
per-atom vector. Some computes produce more than one kind of a single style, e.g. a global scalar and a
global vector.

When a compute quantity is accessed, as in many of the output commands discussed below, it can be
referenced via the following bracket notation, where ID is the ID of the compute:

c_ID entire scalar, vector, or array

c_ID[I] |one element of vector, one column of array

compute command 53

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

|c_ID [11[J] |one element of array |
In other words, using one bracket reduces the dimension of the quantity once (vector -> scalar, array ->
vector). Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar
compute values as input can also process elements of a vector or array.

Note that commands and variables which use compute quantities typically do not allow for all kinds, e.g. a
command may require a vector of values, not a scalar. This means there is no ambiguity about referring to a
compute quantity as c_ID even if it produces, for example, both a scalar and vector. The doc pages for various
commands explain the details.

In LIGGGHTS(R)-PUBLIC, the values generated by a compute can be used in several ways:

¢ Global values can be output via the thermo style custom or fix ave/time command. Or the values can be
referenced in a yariable equal or variable atom command.

¢ Per-atom values can be output via the dump custom command or the fix ave/spatial command. Or they can
be time-averaged via the fix ave/atom command or reduced by the compute reduce command. Or the
per-atom values can be referenced in an atom-style variable.

e Local values can be reduced by the compute reduce command, or histogrammed by the fix ave/histo
command, or output by the dump local command.

The results of computes that calculate global quantities can be either "intensive" or "extensive" values.
Intensive means the value is independent of the number of atoms in the simulation, e.g. temperature.
Extensive means the value scales with the number of atoms in the simulation, e.g. total rotational kinetic
energy. Thermodynamic output will normalize extensive values by the number of atoms in the system,
depending on the "thermo_modify norm" setting. It will not normalize intensive values. If a compute value
is accessed in another way, e.g. by a variable, you may want to know whether it is an intensive or extensive
value. See the doc page for individual computes for further info.

Properties of either a default or user-defined compute can be modified via the compute modify command.
Computes can be deleted with the uncompute command.

Code for new computes can be added to LIGGGHTS(R)-PUBLIC (see this section of the manual) and the
results of their calculations accessed in the various ways described above.

Each compute style has its own doc page which describes its arguments and what it does. The full list of
computes defined in LIGGGHTS(R)-PUBLIC is on this page.

Restrictions: none
Related commands:
uncompute, compute modify, fix ave/atom, fix ave/spatial, fix ave/time, fix ave/histo

Default: none

compute command 54

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute inertia/molecule command

Syntax:
compute ID group-ID inertia/molecule

¢ ID, group-ID are documented in compute command
¢ inertia/molecule = style name of this compute command

Examples:
compute 1 fluid inertia/molecule
Description:

Define a computation that calculates the inertia tensor of individual molecules. The calculation includes all
effects due to atoms passing thru periodic boundaries.

The symmetric intertia tensor has 6 components, ordered Ixx,lyy,Izz,Ixy,lyz,Ixz. The tensor for a particular
molecule is only computed if one or more of its atoms is in the specified group. Normally all atoms in the
molecule should be in the group, however this is not required. LIGGGHTS(R)-PUBLIC will warn you if this
is not the case. Only atoms in the group contribute to the inertia tensor and associated center-of-mass
calculation for the molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, the molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to the molecule's inertia tensor in "unwrapped"
form, by using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read data command for a discussion of image flags
and how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by
using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the inertia tensor may not reflect its true contribution. See the fix rigid
command for details. Thus, to compute the inertia tensor of rigid bodies as they cross periodic boundaries, you
will need to post-process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns =
6 for the 6 components of the inertia tensor of each molecule, ordered as listed above. These values can be
accessed by any command that uses global array values from a compute as input. See Section _howto 15 for an

overview of LIGGGHTS(R)-PUBLIC output options.

The array values are "intensive". The array values will be in distance units.

Restrictions: none

Related commands:

compute inertia/molecule command 55

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
variable inertia() function

Default: none

compute inertia/molecule command

56

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute ke/atom command
Syntax:
compute ID group-ID ke/atom

¢ ID, group-ID are documented in compute command
¢ ke/atom = style name of this compute command

Examples:

compute 1 all ke/atom

Description:

Define a computation that calculates the per-atom translational kinetic energy for each atom in a group.
The kinetic energy is simply 1/2 m v*2, where m is the mass and v is the velocity of each atom.

The value of the kinetic energy will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LIGGGHTS(R)-PUBLIC output options.

The per-atom vector values will be in energy units.
Restrictions: none
Related commands:

dump custom

Default: none

compute ke/atom command 57

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute ke command
Syntax:
compute ID group-ID ke

¢ ID, group-ID are documented in compute command
¢ ke = style name of this compute command

Examples:

compute 1 all ke

Description:

Define a computation that calculates the translational kinetic energy of a group of particles.

The kinetic energy of each particle is computed as 1/2 m v*2, where m and v are the mass and velocity of the
particle.

There is a subtle difference between the quantity calculated by this compute and the kinetic energy calculated
by the ke keyword used in thermodynamic output, as specified by the thermo style command. For this
compute, kinetic energy is "translational" kinetic energy, calculated by the simple formula above. For
thermodynamic output, the ke keyword infers kinetic energy from the temperature of the system with 1/2 Kb
T of energy for each degree of freedom. For the default temperature computation via the compute temp
command, these are the same. But different computes that calculate temperature can subtract out different

non-thermal components of velocity and/or include different degrees of freedom (translational, rotational,
etc).

Output info:

This compute calculates a global scalar (the summed KE). This value can be used by any command that uses a
global scalar value from a compute as input. See Section _howto 15 for an overview of
LIGGGHTS(R)-PUBLIC output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions: none

Related commands:

compute erotate/sphere

Default: none

compute ke command 58

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute ke/multisphere command
Syntax:
compute ID group—-ID ke/multisphere

¢ ID, group-ID are documented in compute command
¢ ke = style name of this compute command

Examples:

compute 1 all ke/multisphere

Description:

Define a computation that calculates the translational kinetic energy of a collection of multisphere bodies.

The kinetic energy of each multisphere body is computed as 1/2 M Vem”2, where M is the total mass of the
multisphere body, and Vcm is its center-of-mass velocity.

This compute automatically connects to the fix multisphere commands which defines the multisphere bodies.
The group specified in the compute command is ignored. The kinetic energy of all the multisphere bodies
defined by the fix multisphere command in included in the calculation.

Output info:

This compute calculates a global scalar (the summed KE of all the multisphere bodies). This value can be
used by any command that uses a global scalar value from a compute as input. See Section _howto 15 for an
overview of LIGGGHTS(R)-PUBLIC output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions: none

Related commands:

compute erotate/multisphere

Default: none

compute ke/multisphere command 59

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute_modify command

Syntax:
compute_modify compute-ID keyword value ...

e compute-ID = ID of the compute to modify
¢ one or more keyword/value pairs may be listed
¢ keyword = extra or dynamic

extra value = N
N = # of extra degrees of freedom to subtract
dynamic value = yes or no

yes/no = do or do not recompute the number of atoms contributing to the temperature
thermo value = yes or no
yes/no = do or do not add contributions from fixes to the potential energy

Examples:

compute_modify myTemp extra O
compute_modify newtemp dynamic yes extra 600

Description:

Modify one or more parameters of a previously defined compute. Not all compute styles support all
parameters.

The extra keyword refers to how many degrees-of-freedom are subtracted (typically from 3N) as a
normalizing factor in a temperature computation. Only computes that compute a temperature use this option.
The default is 2 or 3 for 2d or 3d systems which is a correction factor for an ensemble of velocities with zero
total linear momentum. You can use a negative number for the extra parameter if you need to add
degrees-of-freedom. See the compute temp/asphere command for an example.

The dynamic keyword determines whether the number of atoms N in the compute group is re-computed each
time a temperature is computed. Only compute styles that compute a temperature use this option. By default,
N is assumed to be constant. If you are adding atoms to the system (see the fix_pour or fix deposit commands)
or expect atoms to be lost (e.g. due to evaporation), then this option can be used to insure the temperature is
correctly normalized.

The thermo keyword determines whether the potential energy contribution calculated by some fixes is added
to the potential energy calculated by the compute. Currently, only the compute of style pe uses this option.
See the doc pages for individual fixes for details.

Restrictions: none
Related commands:
compute

Default:

The option defaults are extra =2 or 3 for 2d or 3d systems and dynamic = no. Thermo is yes if the compute of
style pe was defined with no extra keywords; otherwise it is no.

compute_modify command 60

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute msd command

Syntax:
compute ID group-ID msd keyword values ...

¢ ID, group-ID are documented in compute command
¢ msd = style name of this compute command

¢ zero or more keyword/value pairs may be appended
¢ keyword = com

com value = yes or no
Examples:

compute 1 all msd
compute 1 upper msd com yes

Description:

Define a computation that calculates the mean-squared displacement (MSD) of the group of atoms, including
all effects due to atoms passing thru periodic boundaries. For computation of the non-Gaussian parameter of
mean-squared displacement, see the compute msd/nongauss command.

A vector of four quantites is calculated by this compute. The first 3 elements of the vector are the squared
dx,dy,dz displacements, summed and averaged over atoms in the group. The 4th element is the total squared
displacement, i.e. (dx*dx + dy*dy + dz*dz), summed and averaged over atoms in the group.

The slope of the mean-squared displacement (MSD) versus time is proportional to the diffusion coefficient of
the diffusing atoms.

The displacement of an atom is from its original position at the time the compute command was issued. The
value of the displacement will be 0.0 for atoms not in the specified compute group.

If the com option is set to yes then the effect of any drift in the center-of-mass of the group of atoms is
subtracted out before the displacment of each atom is calcluated.

IMPORTANT NOTE: Initial coordinates are stored in "unwrapped" form, by using the image flags associated
with each atom. See the dump custom command for a discussion of "unwrapped" coordinates. See the Atoms
section of the read data command for a discussion of image flags and how they are set for each atom. You
can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the MSD may not reflect its true contribution. See the fix rigid command
for details. Thus, to compute the MSD of rigid bodies as they cross periodic boundaries, you will need to
post-process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: If you want the quantities calculated by this compute to be continuous when running
from a restart file, then you should use the same ID for this compute, as in the original run. This is so that the
created fix will also have the same ID, and thus be initialized correctly with atom coordinates from the restart
file.

compute msd command 61

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
Output info:
This compute calculates a global vector of length 4, which can be accessed by indices 1-4 by any command
that uses global vector values from a compute as input. See this section for an overview of
LIGGGHTS(R)-PUBLIC output options.
The vector values are "intensive". The vector values will be in distance”2 units.
Restrictions: none
Related commands:
compute msd/nongauss, compute displace atom, fix store/state, compute msd/molecule

Default:

The option default is com = no.

compute msd command

62

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute msd/molecule command

Syntax:
compute ID group-ID msd/molecule

¢ ID, group-ID are documented in compute command
¢ msd/molecule = style name of this compute command

Examples:
compute 1 all msd/molecule
Description:

Define a computation that calculates the mean-squared displacement (MSD) of individual molecules. The
calculation includes all effects due to atoms passing thru periodic boundaries.

Four quantites are calculated by this compute for each molecule. The first 3 quantities are the squared
dx,dy,dz displacements of the center-of-mass. The 4th component is the total squared displacement, i.e.
(dx*dx + dy*dy + dz*dz) of the center-of-mass.

The slope of the mean-squared displacement (MSD) versus time is proportional to the diffusion coefficient of
the diffusing molecules.

The displacement of the center-of-mass of the molecule is from its original center-of-mass position at the time
the compute command was issued.

The MSD for a particular molecule is only computed if one or more of its atoms are in the specified group.
Normally all atoms in the molecule should be in the group, however this is not required.
LIGGGHTS(R)-PUBLIC will warn you if this is not the case. Only atoms in the group contribute to the
center-of-mass calculation for the molecule, which is used to caculate its initial and current position.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The initial coordinates of each molecule are stored in "unwrapped" form, by using the
image flags associated with each atom. See the dump custom command for a discussion of "unwrapped"
coordinates. See the Atoms section of the read data command for a discussion of image flags and how they
are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set
image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the MSD may not reflect its true contribution. See the fix rigid command
for details. Thus, to compute the MSD of rigid bodies as they cross periodic boundaries, you will need to
post-process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: Unlike the compute msd command, this compute does not store the initial

center-of-mass coorindates of its molecules in a restart file. Thus you cannot continue the MSD per molecule
calculation of this compute when running from a restart file.

compute msd/molecule command 63

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns =
4 for dx,dy,dz and the total displacement. These values can be accessed by any command that uses global
array values from a compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output
options.

The array values are "intensive". The array values will be in distance”2 units.

Restrictions: none

Related commands:

compute msd

Default: none

compute msd/molecule command 64

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute msd/nongauss command

Syntax:
compute ID group-ID msd/nongauss keyword values ...

¢ ID, group-ID are documented in compute command

¢ msd/nongauss = style name of this compute command
¢ zero or more keyword/value pairs may be appended

¢ keyword = com

com value = yes or no
Examples:

compute 1 all msd/nongauss
compute 1 upper msd/nongauss com yes

Description:

Define a computation that calculates the mean-squared displacement (MSD) and non-Gaussian parameter
(NGP) of the group of atoms, including all effects due to atoms passing thru periodic boundaries.

A vector of three quantites is calculated by this compute. The first element of the vector is the total squared
dx,dy,dz displacements drsquared = (dx*dx + dy*dy + dz*dz) of atoms, and the second is the fourth power of
these displacements drfourth = (dx*dx + dy*dy + dz*dz)*(dx*dx + dy*dy + dz*dz), summed and averaged
over atoms in the group. The 3rd component is the nonGaussian diffusion paramter NGP =
3*drfourth/(5*drsquared*drsquared), i.e.

NGP(t) =3 < (r(t) —r(0))* > /(5 < (r(t) — r(0))* >*) -1

The NGP is a commonly used quantity in studies of dynamical heterogeneity. Its minimum theoretical value
(-0.4) occurs when all atoms have the same displacement magnitude. NGP=0 for Brownian diffusion, while
NGP > 0 when some mobile atoms move faster than others.

If the com option is set to yes then the effect of any drift in the center-of-mass of the group of atoms is
subtracted out before the displacment of each atom is calcluated.

See the compute msd doc page for further IMPORTANT NOTES, which also apply to this compute.
Output info:

This compute calculates a global vector of length 3, which can be accessed by indices 1-3 by any command
that uses global vector values from a compute as input. See this section for an overview of

LIGGGHTS(R)-PUBLIC output options.

The vector values are "intensive". The first vector value will be in distance”?2 units, the second is in distance”4
units, and the 3rd is dimensionless.

compute msd/nongauss command 65

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Restrictions:

This compute is part of the MISC package. It is only enabled if LIGGGHTS(R)-PUBLIC was built with that
package. See the Making LIGGGHTS(R)-PUBLIC section for more info.

Related commands:

compute msd

Default:

The option default is com = no.

compute msd/nongauss command 66

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute nparticles/tracer/region command

Syntax:
compute ID group-ID nparticles/tracer/region

¢ ID, group-ID are documented in compute command

¢ nparticles/tracer/region = style name of this compute command
¢ region_count = obligatory keyword

¢ region-ID = ID of region atoms must be in to be counted

¢ tracer = obligatory keyword

e tracer-ID = ID of a fix of type fix property/atom/tracer

e zero or more keyword/value pairs may be appended to args

¢ keyword = periodic or reset_marker

periodic value = dim image
dim = x or y or z
image = image that a particle has to be in to be counted (any integer number or all)
reset_marker value = yes or no
yes = un-mark particles after counting them
no = do not un-mark particles after counting them
Examples:

compute nparticles all nparticles/tracer/region region_count count tracer tr periodic z -1
Description:
Define a computation that calculates the number and mass of marked and un-marked particles that are in

the region speficied via the region_count keyword. Particles have to be in the group "group-ID" to be
counted.

Note that only particles marked by a fix property/atom/tracer or fix property/atom/tracer/stream command
are counted - therefore, a valid ID of such a fix has to be provided via the tracer keyword.

The reset_marker keyword controls if particles are un-marked (default) after they have been counted once
by this command.

IMPORTANT NOTE: If multiple compute nparticles/tracer/region commands are operating on the same fix

property/atom/tracer commands, and the first compute resets the marker value, the second compute will not
count them.

With the periodic keyword, you can restrict counting/unmarking to particles which are in a specified image
in a periodic simulation. For example, using

periodic z +2

means that particles are only counted if they are in z-image #2. By default, all particles are
counted/unmarked regardless in which periodic image they are.

IMPORTANT NOTE: Currently, this command only supports one periodic boundary restriction via the
periodic keyword. If keyword periodic is used multiple times, the last setting will be applied.

compute nparticles/tracer/region command 67

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Output info:

This this compute calculates a global vector containing the following information (the number in brackets

corresponds to the vector id):
¢ (1) total number of (marked + un-marked) particles in region
® (2) number of marked particles in region
® (3) total mass of (marked + un-marked) particles in region
® (4) mass of marked particles in region

See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

Restrictions:

Currently, only one periodic restriction via the periodic keyword can be used.

Related commands:

fix_property/atom/tracer

Default: reset_marker = yes, periodic is off per default

compute nparticles/tracer/region command

68

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute pair/gran/local command

compute wall/gran/local command

Syntax:

compute ID group-ID pair/gran/local keywords
compute ID group-ID wall/gran/local keywords

¢ ID, group-ID are documented in compute command
e pair/gran/local or wall/gran/local = style name of this compute command
¢ zero or more keywords may be appended

keyword = pos or vel or id or force or torque or history or contactArea or delta:l
pos = positions of particles in contact (6 values)
vel = velocities of particles in contact (6 values)

id = IDs of particles in contact and a periodicity flag (3 values) or IDs of the mesh, t

force = contact force (3 values)

force_normal = normal component of contact force (3 wvalues)

force_tangential = tangential component of contact force (3 values)

torque = torque divided by particle diameter (3 wvalues)

history = contact history (# depends on pair style, e.g. 3 shear history values)
contactArea = area of the contact (1 value)

delta = overlap of the contact (1 value)

heatFlux = conductive heat flux of the contact (1 wvalue)

Examples:

compute 1 all pair/gran/local
compute 1 all pair/gran/local pos force
compute 1 all wall/gran/local

Description:

Define a computation that calculates properties of individual pairwise or particle-wall interactions of a
granular pair style. The number of datums generated, aggregated across all processors, equals the number of
pairwise interactions or particle-wall interactions in the system.

The local data stored by this command is generated by looping over the pairwise neighbor list. Info about an
individual pairwise interaction will only be included if both atoms in the pair are in the specified compute
group, and if the current pairwise distance is less than the force cutoff distance for that interaction, as defined
by the pair_style and pair_coeff commands.

IMPORTANT NOTE: For accessing particle-wall contact data, only mesh walls (see fix mesh) can be used.
For computing particle-wall (compute wall/gran/local), the code will automatically look for a fix wall/gran
command that uses mesh walls. The order of the meshes in the fix wall/gran command is called the mesh id
(starting with 0), and the triangle id reflects the order of the triangles in the STL/VTK file read via the
dedicated fix mesh command. For how to output the trangle id, see "dump mesh/gran/VTK
command"dump.html.

The output pos is the particle positions (6 values) in distance units. Keyword vel will do the same for
velocities. For computing pairwise data, the output id will be the two particle IDs (using this option requires
to use an atom map) and a flag that is 1 for interaction over a periodic boundary and 0 otherwise. For
computing particle-wall data, the output id will be the mesh id, the triangle id and the particle id. The output

compute pair/gran/local command 69

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

force, force_normal, force_tangential and torque are the total contact force, the normal and tangential
components of the contact force, and the torque divided by the particle radius, both in force units. Note that
the normal and tangential components are not necessarily exactly equal to the forces added by the normal and
tangential model used , but are geometrically composed, using the connection line between the particle centers
as normal direction. Note also that the torque does NOT contain any rolling friction torque. The output history
will depend on what this history represents, according to the granular pair style used. The output contactArea
will output the contact area, in distance”2 units. Note that contactArea is based on an analytic geometric
calculation of sphere-sphere or sphere-plane intersection rather than a calculation based on mechanics. This is
to ensure that contactArea works with all types of contact models.

The output delta will output the overlap (sum of radii - distance between particle centers) in distance units
.The output heatFlux (available only if a fix heat/gran is used to compute heat fluxes) will output the
per-contact conductive heat flux area, in energy/time units.

IMPORTANT NOTE: The data associated to the different keywords is output in the following order: pos, vel,
id, force, force_normal, force_tangential, torque, history, contactArea, heatFlux. This is independant of the
order in which the keywords are specified.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, pair output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

IMPORTANT NOTE: This compute, will, when invoked, issue a call to the pair or wall contact models to
calculate what would be the contact forces given the current positions, velocities etc

Since this compute is typically done when output is created (at the end of the time-step), this is not necessarily
exactly equal to (with machine precision) the p-p or p-w forces which were calculated within one time-step.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of pairs. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

For information on the units of the output, see above.

Restrictions:

Can only be used together with a granular pair style. For accessing particle-wall contact data, only mesh walls
can be used.

Related commands:

dump local, compute property/local

Default:

By default, all of the outputs keywords (except force_normal, force_tangential, heat flux and delta) are

activated, i.e. when no keyword is used, positions velocities, ids, forces, torques, history and contact area are
output.

compute wall/gran/local command 70

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute pe/atom command

Syntax:
compute ID group-ID pe/atom keyword ...

¢ ID, group-ID are documented in compute command

® pe/atom = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = pair or bond or angle or dihedral or improper or kspace

Examples:

compute 1 all pe/atom
compute 1 all pe/atom pair
compute 1 all pe/atom pair bond

Description:

Define a computation that computes the per-atom potential energy for each atom in a group. See the compute
pe command if you want the potential energy of the entire system.

The per-atom energy is calculated by the various pair, bond, etc potentials defined for the simulation. If no
extra keywords are listed, then the potential energy is the sum of pair, bond, angle, dihedral,improper, and
kspace energy. If any extra keywords are listed, then only those components are summed to compute the
potential energy.

Note that the energy of each atom is due to its interaction with all other atoms in the simulation, not just with
other atoms in the group.

For an energy contribution produced by a small set of atoms (e.g. 4 atoms in a dihedral or 3 atoms in a Tersoff
3-body interaction), that energy is assigned in equal portions to each atom in the set. E.g. 1/4 of the dihedral
energy to each of the 4 atoms.

The dihedral style charmm style calculates pairwise interactions between 1-4 atoms. The energy contribution
of these terms is included in the pair energy, not the dihedral energy.

The KSpace contribution is calculated using the method in (Heyes) for the Ewald method and a related
method for PPPM, as specified by the kspace style pppm command. For PPPM, the calcluation requires 1
extra FFT each timestep that per-atom energy is calculated. Thie document describes how the long-range
per-atom energy calculation is performed.

As an example of per-atom potential energy compared to total potential energy, these lines in an input script
should yield the same result in the last 2 columns of thermo output:

compute peratom all pe/atom
compute pe all reduce sum c_peratom
thermo_style custom step temp etotal press pe c_pe

IMPORTANT NOTE: The per-atom energy does not any Lennard-Jones tail corrections invoked by the
pair_modify tail yes command, since those are global contributions to the system energy.

compute pe/atom command 71

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section howto 15 for an overview of LIGGGHTS(R)-PUBLIC output options.

The per-atom vector values will be in energy units.

Restrictions:

This compute does not include the potential energy due to the overlap of granular particles.
Related commands:

compute pe, compute stress/atom

Default: none

(Heyes) Heyes, Phys Rev B 49, 755 (1994),

compute pe/atom command 72

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute pe command

Syntax:
compute ID group-ID pe keyword ...

¢ ID, group-ID are documented in compute command

® pe = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = pair or bond or angle or dihedral or improper or kspace

Examples:

compute 1 all pe
compute molPE all pe bond angle dihedral improper

Description:

Define a computation that calculates the potential energy of the entire system of atoms. The specified group
must be "all". See the compute pe/atom command if you want per-atom energies. These per-atom values could
be summed for a group of atoms via the compute reduce command.

The energy is calculated by the various pair, bond, etc potentials defined for the simulation. If no extra
keywords are listed, then the potential energy is the sum of pair, bond, angle, dihedral, improper, and kspace
(long-range) energy. If any extra keywords are listed, then only those components are summed to compute the
potential energy.

Various fixes can contribute to the total potential energy of the system. See the doc pages for individual fixes
for details. The thermo option of the compute modify command determines whether these contributions are
added into the computed potential energy. If no keywords are specified the default is yes. If any keywords are
specified, the default is no.

Output info:

This compute calculates a global scalar (the potential energy). This value can be used by any command that
uses a global scalar value from a compute as input. See Section _howto 15 for an overview of
LIGGGHTS(R)-PUBLIC output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions:

This compute does not include the potential energy due to the overlap of granular particles.

Related commands:

compute pe/atom

Default: none

compute pe command 73

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute pressure command

Syntax:

compute ID group-ID pressure temp-ID keyword ...

¢ ID, group-ID are documented in compute command

¢ pressure = style name of this compute command

e temp-ID = ID of compute that calculates temperature

¢ zero or more keywords may be appended

¢ keyword = ke or pair or bond or angle or dihedral or improper or kspace or fix or virial

Examples:

compute 1 all pressure myTemp
compute 1 all pressure thermo_temp pair bond

Description:
Define a computation that calculates the pressure of the entire system of atoms. The specified group must be
"all". See the compute stress/atom command if you want per-atom pressure (stress). These per-atom values

could be summed for a group of atoms via the compute reduce command.

The pressure is computed by the formula

J'\'r:[d T _J-V r; ® J;
_ Nkg +Zz e f;

P
vV dV

where N is the number of atoms in the system (see discussion of DOF below), Kb is the Boltzmann constant,
T is the temperature, d is the dimensionality of the system (2 or 3 for 2d/3d), V is the system volume (or area
in 2d), and the second term is the virial, computed within LIGGGHTS(R)-PUBLIC for all pairwise as well as
2-body, 3-body, and 4-body, and long-range interactions. Fixes that impose constraints (e.g. the fix shake
command) also contribute to the virial term.

A symmetric pressure tensor, stored as a 6-element vector, is also calculated by this compute. The 6
components of the vector are ordered xx, yy, 7z, Xy, Xz, yz. The equation for the I,J components (where I and
J =x,y,z) is similar to the above formula, except that the first term uses components of the kinetic energy
tensor and the second term uses components of the virial tensor:

NIV s , N
PIJ _ }_4 k MgV : Uk i n Z I 7 k; f/‘CJ

V V

If no extra keywords are listed, the entire equations above are calculated which include a kinetic energy
(temperature) term and the virial as the sum of pair, bond, angle, dihedral, improper, kspace (long-range), and

compute pressure command 74

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

fix contributions to the force on each atom. If any extra keywords are listed, then only those components are
summed to compute temperature or ke and/or the virial. The virial keyword means include all terms except
the kinetic energy ke.

The temperature and kinetic energy tensor is not calculated by this compute, but rather by the temperature
compute specified with the command. Normally this compute should calculate the temperature of all atoms
for consistency with the virial term, but any compute style that calculates temperature can be used, e.g. one
that excludes frozen atoms or other degrees of freedom.

Note that the N in the first formula above is really degrees-of-freedom divided by d = dimensionality, where
the DOF value is calcluated by the temperature compute. See the various compute temperature styles for
details.

A compute of this style with the ID of "thermo_press" is created when LIGGGHTS(R)-PUBLIC starts up, as
if this command were in the input script:

compute thermo_press all pressure thermo_temp

where "thermo_temp" is the ID of a similarly defined compute of style "temp". See the "thermo_style"
command for more details.

Output info:
This compute calculates a global scalar (the pressure) and a global vector of length 6 (pressure tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector

values from a compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

The scalar and vector values calculated by this compute are "intensive". The scalar and vector values will be
in pressure units.

Restrictions: none
Related commands:

compute temp, compute stress/atom, thermo _style,

Default: none

compute pressure command 75

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute property/atom command

Syntax:
compute ID group-ID property/atom inputl input2

¢ ID, group-ID are documented in compute command
® property/atom = style name of this compute command
¢ input = one or more atom attributes

possible attributes = id, mol, type, mass,
X, y, 2z, XS, ys, zs, xu, yu, zu, ix, iy, iz,
vx, vy, vz, fx, fy, fz,
g, mux, muy, muz, mu,
radius, diameter, omegax, omegay, omegaz,
angmomx, angmomy, angmomz,
shapex, shapey, shapez,
quatw, quati, quatj, quatk, taox, tqy, tqgz,
endlx, endly, endlz, end2x, end2y, end2z,
cornerlx, cornerly, cornerlz,
corner2x, corner2y, corner2z,
corner3x, corner3y, corner3z,
i_name, d_name

id = atom ID
mol = molecule ID
type = atom type

mass = atom mass
X,y,2z = unscaled atom coordinates
Xs,ys,zs = scaled atom coordinates

Xu,vyu,zu = unwrapped atom coordinates

ix,iy,iz = box image that the atom is in

vx,vy,vz = atom velocities

fx,fy,fz = forces on atoms

g = atom charge

mux,muy,muz = orientation of dipole moment of atom

mu = magnitude of dipole moment of atom

radius,diameter = radius,diameter of spherical particle

omegax, omegay,omegaz = angular velocity of spherical particle
angmomx, angmomy, angmomz = angular momentum of aspherical particle
shapex, shapey, shapez = 3 diameters of aspherical particle

quatw, quati, quatj,quatk = quaternion components for aspherical or body particles
tax,tqy,tgz = torque on finite-size particles

endl2x, endl2y, endl2z = end points of line segment

conerl23x, cornerl23y, cornerl23z = corner points of triangle
i_name = custom integer vector with name

d_name = custom integer vector with name

Examples:

compute 1 all property/atom xs vx fx mux
compute 2 all property/atom type
compute 1 all property/atom ix iy iz

Description:

Define a computation that simply stores atom attributes for each atom in the group. This is useful so that the
values can be used by other output commands that take computes as inputs. See for example, the compute

compute property/atom command 76

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

reduce, fix ave/atom, fix ave/histo, fix ave/spatial, and atom-style variable commands.

The list of possible attributes is the same as that used by the dump custom command, which describes their
meaning, with some additional quantities that are only defined for certain atom styles. Basically, this list gives
your input script access to any per-atom quantity stored by LIGGGHTS(R)-PUBLIC.

The values are stored in a per-atom vector or array as discussed below. Zeroes are stored for atoms not in the
specified group or for quantities that are not defined for a particular particle in the group (e.g. shapex if the
particle is not an ellipsoid).

The additional quantities only accessible via this command, and not directly via the dump custom command,
are as follows.

Shapex, shapey, and shapez are defined for ellipsoidal particles and define the 3d shape of each particle.

Quatw, quati, quatj, and quatk are defined for ellipsoidal particles and body particles and store the 4-vector
quaternion representing the orientation of each particle. See the set command for an explanation of the
quaternion vector.

EndlIx, endly, endlz, end2x, end2y, end2z, are defined for line segment particles and define the end points of
each line segment.

Cornerlx, cornerly, cornerlz, corner2x, corner2y, corner2z, corner3x, corner3y, corner3z, are defined for
triangular particles and define the corner points of each triangle.

The i_name and d_name attributes refer to custom integer and floating-point properties that have been added
to each atom via the fix property/atom command. When that command is used specific names are given to
each attribute which are what is specified as the "name" portion of i_name or d_name.

Output info:

This compute calculates a per-atom vector or per-atom array depending on the number of input values. If a
single input is specified, a per-atom vector is produced. If two or more inputs are specified, a per-atom array is
produced where the number of columns = the number of inputs. The vector or array can be accessed by any
command that uses per-atom values from a compute as input. See this section for an overview of
LIGGGHTS(R)-PUBLIC output options.

The vector or array values will be in whatever units the corresponding attribute is in, e.g. velocity units for vx,
charge units for g, etc.

Restrictions: none

Related commands:

dump custom, compute reduce, fix ave/atom, fix ave/spatial, fix_property/atom

Default: none

compute property/atom command 77

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute property/local command

Syntax:

compute ID group-ID property/local inputl input?2

¢ ID, group-ID are documented in compute command
e property/local = style name of this compute command
¢ input = one or more attributes

possible attributes = natoml natom2 ntypel ntype2
patoml patom2 ptypel ptype2
batoml batom2 btype

natoml, natom2 = IDs of 2 atoms in each pair (within neighbor cutoff)
ntypel, ntype2 = type of 2 atoms in each pair (within neighbor cutoff)
patoml, patom2 = IDs of 2 atoms in each pair (within force cutoff)

ptypel, ptype2 = type of 2 atoms in each pair (within force cutoff)
batoml, batom2 = IDs of 2 atoms in each bond
btype = bond type of each bond

Examples:

compute 1 all property/local btype batoml batom?2
compute 1 all property/local atype aatom?2

Description:

Define a computation that stores the specified attributes as local data so it can be accessed by other output
commands. If the input attributes refer to bond information, then the number of datums generated, aggregated
across all processors, equals the number of bonds in the system. Ditto for pairs.

If multiple input attributes are specified then they must all generate the same amount of information, so that
the resulting local array has the same number of rows for each column. This means that only bond attributes
can be specified together.

If the inputs are pair attributes, the local data is generated by looping over the pairwise neighbor list. Info
about an individual pairwise interaction will only be included if both atoms in the pair are in the specified
compute group. For natoml and natom?2, all atom pairs in the neighbor list are considered (out to the neighbor
cutoff = force cutoff + neighbor skin). For patomlI and patom?2, the distance between the atoms must be less
than the force cutoff distance for that pair to be included, as defined by the pair_style and pair_coeff
commands.

If the inputs are bond, etc attributes, the local data is generated by looping over all the atoms owned on a
processor and extracting bond, etc info. For bonds, info about an individual bond will only be included if both
atoms in the bond are in the specified compute group. Likewise for angles, dihedrals, etc.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, output from the compute bond/local command can be combined with bond atom
indices from this command and output by the dump local command in a consistent way.

compute property/local command 78

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

The natomlI and natom2, or patoml and patom?2 attributes refer to the atom IDs of the 2 atoms in each
pairwise interaction computed by the pair_style command. The ntypel and ntype2, or ptypel and ptype2
attributes refer to the atom types of the 2 atoms in each pairwise interaction.

IMPORTANT NOTE: For pairs, if two atoms L,J are involved in 1-2, 1-3, 1-4 interactions within the
molecular topology, their pairwise interaction may be turned off, and thus they may not appear in the neighbor
list, and will not be part of the local data created by this command. More specifically, this may be true of IJ
pairs with a weighting factor of 0.0; pairs with a non-zero weighting factor are included. The weighting
factors for 1-2, 1-3, and 1-4 pairwise interactions are set by the special bonds command.

The batoml and batom? attributes refer to the atom IDs of the 2 atoms in each bond. The btype attribute refers
to the type of the bond, from 1 to Nbtypes = # of bond types. The number of bond types is defined in the data
file read by the read data command.

Output info:

This compute calculates a local vector or local array depending on the number of input values. The length of
the vector or number of rows in the array is the number of bonds. If a single input is specified, a local vector is
produced. If two or more inputs are specified, a local array is produced where the number of columns = the
number of inputs. The vector or array can be accessed by any command that uses local values from a compute
as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

The vector or array values will be integers that correspond to the specified attribute.

Restrictions: none

Related commands:

dump local, compute reduce

Default: none

compute property/local command 79

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute property/molecule command

Syntax:
compute ID group-ID property/molecule inputl input2 ...

¢ ID, group-ID are documented in compute command
e property/molecule = style name of this compute command
¢ input = one or more attributes

possible attributes = mol cout
mol = molecule ID
count = # of atoms in molecule

Examples:

compute 1 all property/molecule mol

Description:

Define a computation that stores the specified attributes as global data so it can be accessed by other output
commands and used in conjunction with other commands that generate per-molecule data, such as compute
com/molecule and compute msd/molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

The mol attribute is the molecule ID. This attribute can be used to produce molecule IDs as labels for
per-molecule datums generated by other computes or fixes when they are output to a file, e.g. by the fix
ave/time command.

The count attribute is the number of atoms in the molecule.

Output info:

This compute calculates a global vector or global array depending on the number of input values. The length
of the vector or number of rows in the array is the number of molecules. If a single input is specified, a global
vector is produced. If two or more inputs are specified, a global array is produced where the number of
columns = the number of inputs. The vector or array can be accessed by any command that uses global values
from a compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

The vector or array values will be integers that correspond to the specified attribute.

Restrictions: none

Related commands: none

Default: none

compute property/molecule command 80

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute rdf command

Syntax:
compute ID group-ID rdf Nbin itypel Jjtypel itype2 jtype2 ...

¢ ID, group-ID are documented in compute command

¢ rdf = style name of this compute command

¢ Nbin = number of RDF bins

¢ itypeN = central atom type for Nth RDF histogram (see asterisk form below)

¢ jtypeN = distribution atom type for Nth RDF histogram (see asterisk form below)

Examples:

compute 1 all rdf 100

compute 1 all rdf 100 1 1

compute 1 all rdf 100 * 3

compute 1 fluid rdf 500 1 1 1 2 2 1 2 2
compute 1 fluid rdf 500 1*3 2 5 *10
Description:

Define a computation that calculates the radial distribution function (RDF), also called g(r), and the
coordination number for a group of particles. Both are calculated in histogram form by binning pairwise
distances into Nbin bins from 0.0 to the maximum force cutoff defined by the pair_style command. The bins
are of uniform size in radial distance. Thus a single bin encompasses a thin shell of distances in 3d and a thin
ring of distances in 2d.

IMPORTANT NOTE: If you have a bonded system, then the settings of special bonds command can remove
pairwise interactions between atoms in the same bond, angle, or dihedral. This is the default setting for the
special bonds command, and means those pairwise interactions do not appear in the neighbor list. Because
this fix uses the neighbor list, it also means those pairs will not be included in the RDF. One way to get
around this, is to write a dump file, and use the rerun command to compute the RDF for snapshots in the
dump file. The rerun script can use a special bonds command that includes all pairs in the neighbor list.

The itypeN and jtypeN arguments are optional. These arguments must come in pairs. If no pairs are listed, then
a single histogram is computed for g(r) between all atom types. If one or more pairs are listed, then a separate
histogram is generated for each itype,jtype pair.

The itypeN and jtypeN settings can be specified in one of two ways. An explicit numeric value can be used, as
in the 4th example above. Or a wild-card asterisk can be used to specify a range of atom types. This takes the
form "*" or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values
means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk
means all types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

If both itypeN and jtypeN are single values, as in the 4th example above, this means that a g(r) is computed
where atoms of type itypeN are the central atom, and atoms of type jtypeN are the distribution atom. If either
itypeN and jtypeN represent a range of values via the wild-card asterisk, as in the 5th example above, this
means that a g(r) is computed where atoms of any of the range of types represented by ifypeN are the central
atom, and atoms of any of the range of types represented by jfrypeN are the distribution atom.

compute rdf command 81

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Pairwise distances are generated by looping over a pairwise neighbor list, just as they would be in a pair_style
computation. The distance between two atoms I and J is included in a specific histogram if the following
criteria are met:

e atoms L,J are both in the specified compute group

e the distance between atoms 1,J is less than the maximum force cutoff
e the type of the I atom matches itypeN (one or a range of types)

e the type of the J atom matches jtypeN (one or a range of types)

It is OK if a particular pairwise distance is included in more than one individual histogram, due to the way the
itypeN and jtypeN arguments are specified.

The g(r) value for a bin is calculated from the histogram count by scaling it by the idealized number of how
many counts there would be if atoms of type jtypeN were uniformly distributed. Thus it involves the count of
itypeN atoms, the count of jtypeN atoms, the volume of the entire simulation box, and the volume of the bin's
thin shell in 3d (or the area of the bin's thin ring in 2d).

A coordination number coord(r) is also calculated, which is the number of atoms of type jtypeN within the
current bin or closer, averaged over atoms of type ifypeN. This is calculated as the area- or volume-weighted
sum of g(r) values over all bins up to and including the current bin, multiplied by the global average volume
density of atoms of type jtypeN.

The simplest way to output the results of the compute rdf calculation to a file is to use the fix ave/time
command, for example:

compute myRDF all rdf 50
fix 1 all ave/time 100 1 100 c_myRDF file tmp.rdf mode vector

Output info:

This compute calculates a global array with the number of rows = Nbins, and the number of columns = 1 +
2*Npairs, where Npairs is the number of LJ pairings specified. The first column has the bin coordinate (center
of the bin), Each successive set of 2 columns has the g(r) and coord(r) values for a specific set of irypeN
versus jtypeN interactions, as described above. These values can be used by any command that uses a global
values from a compute as input. See Section _howto 15 for an overview of LIGGGHTS(R)-PUBLIC output
options.

The array values calculated by this compute are all "intensive".

The first column of array values will be in distance units. The g(r) columns of array values are normalized
numbers >= 0.0. The coordination number columns of array values are also numbers >= 0.0.

Restrictions:

The RDF is not computed for distances longer than the force cutoff, since processors (in parallel) don't know
about atom coordinates for atoms further away than that distance. If you want an RDF for larger distances,
you can use the rerun command to post-process a dump file. The definition of g(r) used by
LIGGGHTS(R)-PUBLIC is only appropriate for characterizing atoms that are uniformly distributed
throughout the simulation cell. In such cases, the coordination number is still correct and meaningful. As an
example, if a large simulation cell contains only one atom of type itypeN and one of jtypeN, then g(r) will
register an arbitrarily large spike at whatever distance they happen to be at, and zero everywhere else. coord(r)
will show a step change from zero to one at the location of the spike in g(r).

Related commands:

compute rdf command 82

fix ave/time

Default: none

compute rdf command

LIGGGHTS(R)-PUBLIC Users Manual

83

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute reduce command

compute reduce/region command

Syntax:
compute ID group-ID style arg mode inputl input2 ... keyword args

¢ ID, group-ID are documented in compute command
o style = reduce or reduce/region

reduce arg = none
reduce/region arg = region-ID
region-ID = ID of region to use for choosing atoms
® mode = sum or min or max or ave
¢ one or more inputs can be listed
® input =X, y, z, VX, vy, vz, fx, fy, fz, c_ID, c_ID[N], f_ID, f ID[N], v_name

X,v,2,vx,vy,vz,fx,fy,fz = atom attribute (position, velocity, force component)
c_ID = per-atom or local vector calculated by a compute with ID

c_ID[I] = Ith column of per-atom or local array calculated by a compute with ID
f_ID = per-atom or local vector calculated by a fix with ID

f_ID[I] = Ith column of per-atom or local array calculated by a fix with ID
v_name = per-atom vector calculated by an atom-style variable with name

¢ zero or more keyword/args pairs may be appended
¢ keyword = replace

replace args = vecl vec2

vecl = reduced value from this input vector will be replaced

vec2 = replace it with vecl[N] where N is index of max/min value from vec2
Examples:
compute 1 all reduce sum c_force
compute 1 all reduce/region subbox sum c_force
compute 2 all reduce min c_press2 f_ave v_myKE
compute 3 fluid reduce max c_indexl c_index2 c_dist replace 1 3 replace 2 3
Description:

Define a calculation that "reduces" one or more vector inputs into scalar values, one per listed input. The
inputs can be per-atom or local quantities; they cannot be global quantities. Atom attributes are per-atom
quantities, computes and fixes may generate any of the three kinds of quantities, and atom-style variables
generate per-atom quantities. See the variable command and its special functions which can perform the same
operations as the compute reduce command on global vectors.

The reduction operation is specified by the mode setting. The sum option adds the values in the vector into a
global total. The min or max options find the minimum or maximum value across all vector values. The ave
setting adds the vector values into a global total, then divides by the number of values in the vector.

Each listed input is operated on independently. For per-atom inputs, the group specified with this command
means only atoms within the group contribute to the result. For per-atom inputs, if the compute reduce/region
command is used, the atoms must also currently be within the region. Note that an input that produces
per-atom quantities may define its own group which affects the quantities it returns. For example, if a

compute reduce command 84

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

compute is used as an input which generates a per-atom vector, it will generate values of 0.0 for atoms that are
not in the group specified for that compute.

Each listed input can be an atom attribute (position, velocity, force component) or can be the result of a
compute or fix or the evaluation of an atom-style variable.

The atom attribute values (X,y,z,vx,vy,vz,fx,fy,fz) are self-explanatory. Note that other atom attributes can be
used as inputs to this fix by using the compute property/atom command and then specifying an input value
from that compute.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script.
Computes can generate per-atom or local quantities. See the individual compute doc page for details. If no
bracketed integer is appended, the vector calculated by the compute is used. If a bracketed integer is
appended, the Ith column of the array calculated by the compute is used. Users can also write code for their

own compute styles and add them to LIGGGHTS(R)-PUBLIC.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. Fixes
can generate per-atom or local quantities. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute reduce references the
values, else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a
bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can also write
code for their own fix style and add them to LIGGGHTS(R)-PUBLIC.

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. It must be an atom-style variable. Atom-style variables can reference thermodynamic keywords and
various per-atom attributes, or invoke other computes, fixes, or variables when they are evaluated, so this is a
very general means of generating per-atom quantities to reduce.

If the replace keyword is used, two indices vecl and vec2 are specified, where each index ranges from 1 to the
of input values. The replace keyword can only be used if the mode is min or max. It works as follows. A
min/max is computed as usual on the vec2 input vector. The index N of that value within vec?2 is also stored.
Then, instead of performing a min/max on the vec! input vector, the stored index is used to select the Nth
element of the vec/ vector.

Thus, for example, if you wish to use this compute to find the bond with maximum stretch, you can do it as
follows:

compute 1 all property/local batoml batom2

compute 2 all bond/local dist

compute 3 all reduce max c_1[1] c_1[2] c_2 replace 1 3 replace 2 3
thermo_style custom step temp c_3[1] c_3[2] c_31[3]

The first two input values in the compute reduce command are vectors with the IDs of the 2 atoms in each
bond, using the compute property/local command. The last input value is bond distance, using the compute
bond/local command. Instead of taking the max of the two atom ID vectors, which does not yield useful
information in this context, the replace keywords will extract the atom IDs for the two atoms in the bond of
maximum stretch. These atom IDs and the bond stretch will be printed with thermodynamic output.

If a single input is specified this compute produces a global scalar value. If multiple inputs are specified, this
compute produces a global vector of values, the length of which is equal to the number of inputs specified.

As discussed below, for sum mode, the value(s) produced by this compute are all "extensive", meaning their
value scales linearly with the number of atoms involved. If normalized values are desired, this compute can be
accessed by the thermo_style custom command with thermo _modify norm yes set as an option. Or it can be
accessed by a variable that divides by the appropriate atom count.

compute reduce/region command 85

LIGGGHTS(R)-PUBLIC Users Manual

Output info:

This compute calculates a global scalar if a single input value is specified or a global vector of length N where
N is the number of inputs, and which can be accessed by indices 1 to N. These values can be used by any
command that uses global scalar or vector values from a compute as input. See Section howto 15 for an

overview of LIGGGHTS(R)-PUBLIC output options.

All the scalar or vector values calculated by this compute are "intensive", except when the sum mode is used
on per-atom or local vectors, in which case the calculated values are "extensive".

The scalar or vector values will be in whatever units the quantities being reduced are in.
Restrictions: none

Related commands:

compute, fix, variable

Default: none

compute reduce/region command 86

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute rigid command

compute multisphere command

Syntax:
compute ID group-ID rigid (or multisphere) property property_name

¢ ID, group-ID are documented in compute command

¢ property = obligatory keyword

® property_name = xcm Or vcm Or fcm Or torque or quat or angmom or omega or density or type or id or
masstotal or inertia or ex_space or ey_space or ez_space

xcm = body position (based on center of mass) (3 values)
vem = body velocity (based on center of mass) (3 values)
fcm = body force (based on center of mass) (3 values)
torque = body torque (based on center of mass) (3 values)
quat = body quaternion (based on center of mass) (4 values)
angmom = body angular momentum (based on center of mass) (3 values)
omega = body angular velocity (based on center of mass) (3 values)

density = body density (1 value)
atomtype = atom type (material type) of the rigid body (1 wvalue)

clumptype = multi-sphere type as defined in fix paticleteplate/multisphere (1 value)

id _multisphere = body id (1 wvalue)

masstotal = body mass (1 value)

inertia = body intertia (based on center of mass, around ex_space, ey_space, ez_space) (
ex_space, ey_space, ez_space = eigensystem of the body (based on center of mass) (3 valu

Examples:

compute xcm all rigid property xcm
compute xcm all multisphere property xcm

Description:

Define a computation that calculates properties of individual multi-sphere bodies (clumps) in the similation

that were defined via fix particletemplate/multisphere

The local data stored by this command is generated by looping over the all the bodies owned on a process.

IMPORTANT NOTE: the group-ID is ignored for this command, as group data is atom-based, not
clump-based.

Output info:

This compute calculates a local vector or local array depending on the length of the data (see above). The
vector or array can be accessed by any command that uses local values from a compute as input. See this
section for an overview of LIGGGHTS(R)-PUBLIC output options.

Restrictions:

Can only be used together with a granular pair style. For accessing particle-wall contact data, only mesh walls
can be used.

compute rigid command 87

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Related commands:

dump local, compute property/local

Default: none

compute multisphere command

88

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute slice command

Syntax:
compute ID group-ID slice Nstart Nstop Nskip inputl input2 ...

¢ ID, group-ID are documented in compute command

¢ slice = style name of this compute command

¢ Nstart = starting index within input vector(s)

¢ Nstop = stopping index within input vector(s)

¢ Nskip = extract every Nskip elements from input vector(s)
¢ input = c_ID, c_ID[N], f_ID, f_ID[N]

c_ID = global vector calculated by a compute with ID

c_ID[I] = Ith column of global array calculated by a compute with ID
f_ID = global vector calculated by a fix with ID
f_ID[I] = Ith column of global array calculated by a fix with ID

Examples:

compute 1 all slice 1 100 10 c_msdmol[4]
compute 1 all slice 301 400 1 c_msdmol([4]

Description:

Define a calculation that "slices" one or more vector inputs into smaller vectors, one per listed input. The
inputs can be global quantities; they cannot be per-atom or local quantities. Computes and fixes may generate
any of the three kinds of quantities. Variables do not generate global vectors. The group specified with this
command is ignored.

The values extracted from the input vector(s) are determined by the Nstart, Nstop, and Nskip parameters. The
elements of an input vector of length N are indexed from 1 to N. Starting at element Nstart, every Mth
element is extracted, where M = Nskip, until element Nstop is reached. The extracted quantities are stored as a
vector, which is typically shorter than the input vector.

Each listed input is operated on independently to produce one output vector. Each listed input must be a
global vector or column of a global array calculated by another compute or fix.

If an input value begins with "c_", a compute ID must follow which has been previously defined in the input
script and which generates a global vector or array. See the individual compute doc page for details. If no
bracketed integer is appended, the vector calculated by the compute is used. If a bracketed integer is
appended, the Ith column of the array calculated by the compute is used. Users can also write code for their

own compute styles and add them to LIGGGHTS(R)-PUBLIC.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script and
which generates a global vector or array. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute slice references the
values, else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a
bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can